diff mbox

[v7,06/10] iommu/dma-reserved-iommu: iommu_get/put_reserved_iova

Message ID 1461084994-2355-7-git-send-email-eric.auger@linaro.org
State New
Headers show

Commit Message

Auger Eric April 19, 2016, 4:56 p.m. UTC
This patch introduces iommu_get/put_reserved_iova.

iommu_get_reserved_iova allows to iommu map a contiguous physical region
onto a reserved contiguous IOVA region. The physical region base address
does not need to be iommu page size aligned. iova pages are allocated and
mapped so that they cover all the physical region. This mapping is
tracked as a whole (and cannot be split) in an RB tree indexed by PA.

In case a mapping already exists for the physical pages, the IOVA mapped
to the PA base is directly returned.

Each time the get succeeds a binding ref count is incremented.

iommu_put_reserved_iova decrements the ref count and when this latter
is null, the mapping is destroyed and the iovas are released.

Signed-off-by: Eric Auger <eric.auger@linaro.org>


---
v7:
- change title and rework commit message with new name of the functions
  and size parameter
- fix locking
- rework header doc comments
- put now takes a phys_addr_t
- check prot argument against reserved_iova_domain prot flags

v5 -> v6:
- revisit locking with spin_lock instead of mutex
- do not kref_get on 1st get
- add size parameter to the get function following Marc's request
- use the iova domain shift instead of using the smallest supported page size

v3 -> v4:
- formerly in iommu: iommu_get/put_single_reserved &
  iommu/arm-smmu: implement iommu_get/put_single_reserved
- Attempted to address Marc's doubts about missing size/alignment
  at VFIO level (user-space knows the IOMMU page size and the number
  of IOVA pages to provision)

v2 -> v3:
- remove static implementation of iommu_get_single_reserved &
  iommu_put_single_reserved when CONFIG_IOMMU_API is not set

v1 -> v2:
- previously a VFIO API, named vfio_alloc_map/unmap_free_reserved_iova
---
 drivers/iommu/dma-reserved-iommu.c | 150 +++++++++++++++++++++++++++++++++++++
 include/linux/dma-reserved-iommu.h |  38 ++++++++++
 2 files changed, 188 insertions(+)

-- 
1.9.1

Comments

Auger Eric April 21, 2016, 8:43 a.m. UTC | #1
Hi Robin,
On 04/20/2016 06:58 PM, Robin Murphy wrote:
> On 19/04/16 17:56, Eric Auger wrote:

>> This patch introduces iommu_get/put_reserved_iova.

>>

>> iommu_get_reserved_iova allows to iommu map a contiguous physical region

>> onto a reserved contiguous IOVA region. The physical region base address

>> does not need to be iommu page size aligned. iova pages are allocated and

>> mapped so that they cover all the physical region. This mapping is

>> tracked as a whole (and cannot be split) in an RB tree indexed by PA.

>>

>> In case a mapping already exists for the physical pages, the IOVA mapped

>> to the PA base is directly returned.

>>

>> Each time the get succeeds a binding ref count is incremented.

>>

>> iommu_put_reserved_iova decrements the ref count and when this latter

>> is null, the mapping is destroyed and the iovas are released.

>>

>> Signed-off-by: Eric Auger <eric.auger@linaro.org>

>>

>> ---

>> v7:

>> - change title and rework commit message with new name of the functions

>>    and size parameter

>> - fix locking

>> - rework header doc comments

>> - put now takes a phys_addr_t

>> - check prot argument against reserved_iova_domain prot flags

>>

>> v5 -> v6:

>> - revisit locking with spin_lock instead of mutex

>> - do not kref_get on 1st get

>> - add size parameter to the get function following Marc's request

>> - use the iova domain shift instead of using the smallest supported

>> page size

>>

>> v3 -> v4:

>> - formerly in iommu: iommu_get/put_single_reserved &

>>    iommu/arm-smmu: implement iommu_get/put_single_reserved

>> - Attempted to address Marc's doubts about missing size/alignment

>>    at VFIO level (user-space knows the IOMMU page size and the number

>>    of IOVA pages to provision)

>>

>> v2 -> v3:

>> - remove static implementation of iommu_get_single_reserved &

>>    iommu_put_single_reserved when CONFIG_IOMMU_API is not set

>>

>> v1 -> v2:

>> - previously a VFIO API, named vfio_alloc_map/unmap_free_reserved_iova

>> ---

>>   drivers/iommu/dma-reserved-iommu.c | 150

>> +++++++++++++++++++++++++++++++++++++

>>   include/linux/dma-reserved-iommu.h |  38 ++++++++++

>>   2 files changed, 188 insertions(+)

>>

>> diff --git a/drivers/iommu/dma-reserved-iommu.c

>> b/drivers/iommu/dma-reserved-iommu.c

>> index f6fa18e..426d339 100644

>> --- a/drivers/iommu/dma-reserved-iommu.c

>> +++ b/drivers/iommu/dma-reserved-iommu.c

>> @@ -135,6 +135,22 @@ unlock:

>>   }

>>   EXPORT_SYMBOL_GPL(iommu_alloc_reserved_iova_domain);

>>

>> +/* called with domain's reserved_lock held */

>> +static void reserved_binding_release(struct kref *kref)

>> +{

>> +    struct iommu_reserved_binding *b =

>> +        container_of(kref, struct iommu_reserved_binding, kref);

>> +    struct iommu_domain *d = b->domain;

>> +    struct reserved_iova_domain *rid =

>> +        (struct reserved_iova_domain *)d->reserved_iova_cookie;

> 

> Either it's a void *, in which case you don't need to cast it, or it

> should be the appropriate type as I mentioned earlier, in which case you

> still wouldn't need to cast it.

ok
> 

>> +    unsigned long order;

>> +

>> +    order = iova_shift(rid->iovad);

>> +    free_iova(rid->iovad, b->iova >> order);

> 

> iova_pfn() ?

ok
> 

>> +    unlink_reserved_binding(d, b);

>> +    kfree(b);

>> +}

>> +

>>   void iommu_free_reserved_iova_domain(struct iommu_domain *domain)

>>   {

>>       struct reserved_iova_domain *rid;

>> @@ -160,3 +176,137 @@ unlock:

>>       }

>>   }

>>   EXPORT_SYMBOL_GPL(iommu_free_reserved_iova_domain);

>> +

>> +int iommu_get_reserved_iova(struct iommu_domain *domain,

>> +                  phys_addr_t addr, size_t size, int prot,

>> +                  dma_addr_t *iova)

>> +{

>> +    unsigned long base_pfn, end_pfn, nb_iommu_pages, order, flags;

>> +    struct iommu_reserved_binding *b, *newb;

>> +    size_t iommu_page_size, binding_size;

>> +    phys_addr_t aligned_base, offset;

>> +    struct reserved_iova_domain *rid;

>> +    struct iova_domain *iovad;

>> +    struct iova *p_iova;

>> +    int ret = -EINVAL;

>> +

>> +    newb = kzalloc(sizeof(*newb), GFP_KERNEL);

>> +    if (!newb)

>> +        return -ENOMEM;

>> +

>> +    spin_lock_irqsave(&domain->reserved_lock, flags);

>> +

>> +    rid = (struct reserved_iova_domain *)domain->reserved_iova_cookie;

>> +    if (!rid)

>> +        goto free_newb;

>> +

>> +    if ((prot & IOMMU_READ & !(rid->prot & IOMMU_READ)) ||

>> +        (prot & IOMMU_WRITE & !(rid->prot & IOMMU_WRITE)))

> 

> Are devices wanting to read from MSI doorbells really a thing?

the rationale is Alex asked for propagating the VFIO DMA MAP prot flag
downto this API (genericity context). This later is stored in rid->prot
and I was just checking the iova was mapped according to the direction
the userspace expected.
> 

>> +        goto free_newb;

>> +

>> +    iovad = rid->iovad;

>> +    order = iova_shift(iovad);

>> +    base_pfn = addr >> order;

>> +    end_pfn = (addr + size - 1) >> order;

>> +    aligned_base = base_pfn << order;

>> +    offset = addr - aligned_base;

>> +    nb_iommu_pages = end_pfn - base_pfn + 1;

>> +    iommu_page_size = 1 << order;

>> +    binding_size = nb_iommu_pages * iommu_page_size;

> 

> offset = iova_offset(iovad, addr);

> aligned_base = addr - offset;

> binding_size = iova_align(iovad, size + offset);

> 

> Am I right?

Looks so. Will further test it. Thanks
> 

>> +

>> +    b = find_reserved_binding(domain, aligned_base, binding_size);

>> +    if (b) {

>> +        *iova = b->iova + offset + aligned_base - b->addr;

>> +        kref_get(&b->kref);

>> +        ret = 0;

>> +        goto free_newb;

>> +    }

>> +

>> +    p_iova = alloc_iova(iovad, nb_iommu_pages,

>> +                iovad->dma_32bit_pfn, true);

>> +    if (!p_iova) {

>> +        ret = -ENOMEM;

>> +        goto free_newb;

>> +    }

>> +

>> +    *iova = iova_dma_addr(iovad, p_iova);

>> +

>> +    /* unlock to call iommu_map which is not guaranteed to be atomic */

> 

> Hmm, that's concerning, because the ARM DMA mapping code, and

> consequently the iommu-dma layer, has always relied on it being so. On

> brief inspection, it looks to be only the AMD IOMMU doing something

> obviously non-atomic (taking a mutex) in its map callback, but then that

> has a separate DMA ops implementation. It doesn't look like it would be

> too intrusive to change, either, but that's an idea for its own thread.

yes. Making no hypothesis on the atomicity of iommu_map/unmap ops
brought some extra complexity here. Also it obliged to separate the
alloc/map from the iommu "binding" lookup. But now it is done I think it
brings some added value. Typically the fact we introduced an irq-chip
ops to retrieve the doorbells characteristics is valuable to enumerate
their number.
> 

>> +    spin_unlock_irqrestore(&domain->reserved_lock, flags);

>> +

>> +    ret = iommu_map(domain, *iova, aligned_base, binding_size, prot);

>> +

>> +    spin_lock_irqsave(&domain->reserved_lock, flags);

>> +

>> +    rid = (struct reserved_iova_domain *) domain->reserved_iova_cookie;

>> +    if (!rid || (rid->iovad != iovad)) {

>> +        /* reserved iova domain was destroyed in our back */

> 

> That that could happen at all is terrifying! Surely the reserved domain

> should be set up immediately after iommu_domain_alloc() and torn down

> immediately before iommu_domain_free(). Things going missing while a

> domain is live smacks of horrible brokenness.

The VFIO user client creates the "reserved iova domain" using the vfio
VFIO_IOMMU_MAP_DMA ioctl. This can happen anytime after the iommu domain
creation (on VFIO_SET_IOMMU ioctl). The user-space is currently allowed
to unregister this iova domain at any time too. I think this is wrong: I
should have 2 reserved iova domain destroy functions, one used by
user-space and one used by kernel. In the user-space implementation I
should reject any attempt to destroy the reserved iova domain until
there are existing bindings.

> 

>> +        ret = -EBUSY;

>> +        goto free_newb; /* iova already released */

>> +    }

>> +

>> +    /* no change in iova reserved domain but iommu_map failed */

>> +    if (ret)

>> +        goto free_iova;

>> +

>> +    /* everything is fine, add in the new node in the rb tree */

>> +    kref_init(&newb->kref);

>> +    newb->domain = domain;

>> +    newb->addr = aligned_base;

>> +    newb->iova = *iova;

>> +    newb->size = binding_size;

>> +

>> +    link_reserved_binding(domain, newb);

>> +

>> +    *iova += offset;

>> +    goto unlock;

>> +

>> +free_iova:

>> +    free_iova(rid->iovad, p_iova->pfn_lo);

>> +free_newb:

>> +    kfree(newb);

>> +unlock:

>> +    spin_unlock_irqrestore(&domain->reserved_lock, flags);

>> +    return ret;

>> +}

>> +EXPORT_SYMBOL_GPL(iommu_get_reserved_iova);

>> +

>> +void iommu_put_reserved_iova(struct iommu_domain *domain, phys_addr_t

>> addr)

>> +{

>> +    phys_addr_t aligned_addr, page_size, mask;

>> +    struct iommu_reserved_binding *b;

>> +    struct reserved_iova_domain *rid;

>> +    unsigned long order, flags;

>> +    struct iommu_domain *d;

>> +    dma_addr_t iova;

>> +    size_t size;

>> +    int ret = 0;

>> +

>> +    spin_lock_irqsave(&domain->reserved_lock, flags);

>> +

>> +    rid = (struct reserved_iova_domain *)domain->reserved_iova_cookie;

>> +    if (!rid)

>> +        goto unlock;

>> +

>> +    order = iova_shift(rid->iovad);

>> +    page_size = (uint64_t)1 << order;

>> +    mask = page_size - 1;

>> +    aligned_addr = addr & ~mask;

> 

> addr & ~iova_mask(rid->iovad)

OK
> 

>> +

>> +    b = find_reserved_binding(domain, aligned_addr, page_size);

>> +    if (!b)

>> +        goto unlock;

>> +

>> +    iova = b->iova;

>> +    size = b->size;

>> +    d = b->domain;

>> +

>> +    ret = kref_put(&b->kref, reserved_binding_release);

>> +

>> +unlock:

>> +    spin_unlock_irqrestore(&domain->reserved_lock, flags);

>> +    if (ret)

>> +        iommu_unmap(d, iova, size);

>> +}

>> +EXPORT_SYMBOL_GPL(iommu_put_reserved_iova);

>> +

>> diff --git a/include/linux/dma-reserved-iommu.h

>> b/include/linux/dma-reserved-iommu.h

>> index 01ec385..8722131 100644

>> --- a/include/linux/dma-reserved-iommu.h

>> +++ b/include/linux/dma-reserved-iommu.h

>> @@ -42,6 +42,34 @@ int iommu_alloc_reserved_iova_domain(struct

>> iommu_domain *domain,

>>    */

>>   void iommu_free_reserved_iova_domain(struct iommu_domain *domain);

>>

>> +/**

>> + * iommu_get_reserved_iova: allocate a contiguous set of iova pages and

>> + * map them to the physical range defined by @addr and @size.

>> + *

>> + * @domain: iommu domain handle

>> + * @addr: physical address to bind

>> + * @size: size of the binding

>> + * @prot: mapping protection attribute

>> + * @iova: returned iova

>> + *

>> + * Mapped physical pfns are within [@addr >> order, (@addr + size -1)

>> >> order]

>> + * where order corresponds to the reserved iova domain order.

>> + * This mapping is tracked and reference counted with the minimal

>> granularity

>> + * of @size.

>> + */

>> +int iommu_get_reserved_iova(struct iommu_domain *domain,

>> +                phys_addr_t addr, size_t size, int prot,

>> +                dma_addr_t *iova);

>> +

>> +/**

>> + * iommu_put_reserved_iova: decrement a ref count of the reserved

>> mapping

>> + *

>> + * @domain: iommu domain handle

>> + * @addr: physical address whose binding ref count is decremented

>> + *

>> + * if the binding ref count is null, destroy the reserved mapping

>> + */

>> +void iommu_put_reserved_iova(struct iommu_domain *domain, phys_addr_t

>> addr);

>>   #else

>>

>>   static inline int

>> @@ -55,5 +83,15 @@ iommu_alloc_reserved_iova_domain(struct

>> iommu_domain *domain,

>>   static inline void

>>   iommu_free_reserved_iova_domain(struct iommu_domain *domain) {}

>>

>> +static inline int iommu_get_reserved_iova(struct iommu_domain *domain,

>> +                      phys_addr_t addr, size_t size,

>> +                      int prot, dma_addr_t *iova)

>> +{

>> +    return -ENOENT;

>> +}

>> +

>> +static inline void iommu_put_reserved_iova(struct iommu_domain *domain,

>> +                       phys_addr_t addr) {}

>> +

>>   #endif    /* CONFIG_IOMMU_DMA_RESERVED */

>>   #endif    /* __DMA_RESERVED_IOMMU_H */

>>

> 

> I worry that this all falls into the trap of trying too hard to abstract

> something which doesn't need abstracting. AFAICS all we need is

> something for VFIO to keep track of its own IOVA usage vs. userspace's,

> plus a list of MSI descriptors (with IOVAs) wrapped in refcounts hanging

> off the iommu_domain, with a handful of functions to manage them. The

> former is as good as solved already - stick an iova_domain or even just

> a bitmap in the iova_cookie and use it directly - and the latter would

> actually be reusable elsewhere (e.g. for iommu-dma domains). What I'm

> seeing here is layers upon layers of complexity with no immediate

> justification, that's 'generic' enough to not directly solve the problem

> at hand, but in a way that still makes it more or less unusable for

> solving equivalent problems elsewhere.

> 

> Since I don't like that everything I have to say about this series so

> far seems negative, I'll plan to spend some time next week having a go

> at hardening my 50-line proof-of-concept for stage 1 MSIs, and see if I

> can offer code instead of criticism :)

No worries. I really appreciate the time you've already spent reading
this code ;-) I aknowledge it is a lot of trouble for mapping a single
page - in my case - ! Anyway I will take into account your comments and
simplify things accordingly. Let's see how we can converge...

Best Regards

Eric
> 

> Robin.
diff mbox

Patch

diff --git a/drivers/iommu/dma-reserved-iommu.c b/drivers/iommu/dma-reserved-iommu.c
index f6fa18e..426d339 100644
--- a/drivers/iommu/dma-reserved-iommu.c
+++ b/drivers/iommu/dma-reserved-iommu.c
@@ -135,6 +135,22 @@  unlock:
 }
 EXPORT_SYMBOL_GPL(iommu_alloc_reserved_iova_domain);
 
+/* called with domain's reserved_lock held */
+static void reserved_binding_release(struct kref *kref)
+{
+	struct iommu_reserved_binding *b =
+		container_of(kref, struct iommu_reserved_binding, kref);
+	struct iommu_domain *d = b->domain;
+	struct reserved_iova_domain *rid =
+		(struct reserved_iova_domain *)d->reserved_iova_cookie;
+	unsigned long order;
+
+	order = iova_shift(rid->iovad);
+	free_iova(rid->iovad, b->iova >> order);
+	unlink_reserved_binding(d, b);
+	kfree(b);
+}
+
 void iommu_free_reserved_iova_domain(struct iommu_domain *domain)
 {
 	struct reserved_iova_domain *rid;
@@ -160,3 +176,137 @@  unlock:
 	}
 }
 EXPORT_SYMBOL_GPL(iommu_free_reserved_iova_domain);
+
+int iommu_get_reserved_iova(struct iommu_domain *domain,
+			      phys_addr_t addr, size_t size, int prot,
+			      dma_addr_t *iova)
+{
+	unsigned long base_pfn, end_pfn, nb_iommu_pages, order, flags;
+	struct iommu_reserved_binding *b, *newb;
+	size_t iommu_page_size, binding_size;
+	phys_addr_t aligned_base, offset;
+	struct reserved_iova_domain *rid;
+	struct iova_domain *iovad;
+	struct iova *p_iova;
+	int ret = -EINVAL;
+
+	newb = kzalloc(sizeof(*newb), GFP_KERNEL);
+	if (!newb)
+		return -ENOMEM;
+
+	spin_lock_irqsave(&domain->reserved_lock, flags);
+
+	rid = (struct reserved_iova_domain *)domain->reserved_iova_cookie;
+	if (!rid)
+		goto free_newb;
+
+	if ((prot & IOMMU_READ & !(rid->prot & IOMMU_READ)) ||
+	    (prot & IOMMU_WRITE & !(rid->prot & IOMMU_WRITE)))
+		goto free_newb;
+
+	iovad = rid->iovad;
+	order = iova_shift(iovad);
+	base_pfn = addr >> order;
+	end_pfn = (addr + size - 1) >> order;
+	aligned_base = base_pfn << order;
+	offset = addr - aligned_base;
+	nb_iommu_pages = end_pfn - base_pfn + 1;
+	iommu_page_size = 1 << order;
+	binding_size = nb_iommu_pages * iommu_page_size;
+
+	b = find_reserved_binding(domain, aligned_base, binding_size);
+	if (b) {
+		*iova = b->iova + offset + aligned_base - b->addr;
+		kref_get(&b->kref);
+		ret = 0;
+		goto free_newb;
+	}
+
+	p_iova = alloc_iova(iovad, nb_iommu_pages,
+			    iovad->dma_32bit_pfn, true);
+	if (!p_iova) {
+		ret = -ENOMEM;
+		goto free_newb;
+	}
+
+	*iova = iova_dma_addr(iovad, p_iova);
+
+	/* unlock to call iommu_map which is not guaranteed to be atomic */
+	spin_unlock_irqrestore(&domain->reserved_lock, flags);
+
+	ret = iommu_map(domain, *iova, aligned_base, binding_size, prot);
+
+	spin_lock_irqsave(&domain->reserved_lock, flags);
+
+	rid = (struct reserved_iova_domain *) domain->reserved_iova_cookie;
+	if (!rid || (rid->iovad != iovad)) {
+		/* reserved iova domain was destroyed in our back */
+		ret = -EBUSY;
+		goto free_newb; /* iova already released */
+	}
+
+	/* no change in iova reserved domain but iommu_map failed */
+	if (ret)
+		goto free_iova;
+
+	/* everything is fine, add in the new node in the rb tree */
+	kref_init(&newb->kref);
+	newb->domain = domain;
+	newb->addr = aligned_base;
+	newb->iova = *iova;
+	newb->size = binding_size;
+
+	link_reserved_binding(domain, newb);
+
+	*iova += offset;
+	goto unlock;
+
+free_iova:
+	free_iova(rid->iovad, p_iova->pfn_lo);
+free_newb:
+	kfree(newb);
+unlock:
+	spin_unlock_irqrestore(&domain->reserved_lock, flags);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(iommu_get_reserved_iova);
+
+void iommu_put_reserved_iova(struct iommu_domain *domain, phys_addr_t addr)
+{
+	phys_addr_t aligned_addr, page_size, mask;
+	struct iommu_reserved_binding *b;
+	struct reserved_iova_domain *rid;
+	unsigned long order, flags;
+	struct iommu_domain *d;
+	dma_addr_t iova;
+	size_t size;
+	int ret = 0;
+
+	spin_lock_irqsave(&domain->reserved_lock, flags);
+
+	rid = (struct reserved_iova_domain *)domain->reserved_iova_cookie;
+	if (!rid)
+		goto unlock;
+
+	order = iova_shift(rid->iovad);
+	page_size = (uint64_t)1 << order;
+	mask = page_size - 1;
+	aligned_addr = addr & ~mask;
+
+	b = find_reserved_binding(domain, aligned_addr, page_size);
+	if (!b)
+		goto unlock;
+
+	iova = b->iova;
+	size = b->size;
+	d = b->domain;
+
+	ret = kref_put(&b->kref, reserved_binding_release);
+
+unlock:
+	spin_unlock_irqrestore(&domain->reserved_lock, flags);
+	if (ret)
+		iommu_unmap(d, iova, size);
+}
+EXPORT_SYMBOL_GPL(iommu_put_reserved_iova);
+
diff --git a/include/linux/dma-reserved-iommu.h b/include/linux/dma-reserved-iommu.h
index 01ec385..8722131 100644
--- a/include/linux/dma-reserved-iommu.h
+++ b/include/linux/dma-reserved-iommu.h
@@ -42,6 +42,34 @@  int iommu_alloc_reserved_iova_domain(struct iommu_domain *domain,
  */
 void iommu_free_reserved_iova_domain(struct iommu_domain *domain);
 
+/**
+ * iommu_get_reserved_iova: allocate a contiguous set of iova pages and
+ * map them to the physical range defined by @addr and @size.
+ *
+ * @domain: iommu domain handle
+ * @addr: physical address to bind
+ * @size: size of the binding
+ * @prot: mapping protection attribute
+ * @iova: returned iova
+ *
+ * Mapped physical pfns are within [@addr >> order, (@addr + size -1) >> order]
+ * where order corresponds to the reserved iova domain order.
+ * This mapping is tracked and reference counted with the minimal granularity
+ * of @size.
+ */
+int iommu_get_reserved_iova(struct iommu_domain *domain,
+			    phys_addr_t addr, size_t size, int prot,
+			    dma_addr_t *iova);
+
+/**
+ * iommu_put_reserved_iova: decrement a ref count of the reserved mapping
+ *
+ * @domain: iommu domain handle
+ * @addr: physical address whose binding ref count is decremented
+ *
+ * if the binding ref count is null, destroy the reserved mapping
+ */
+void iommu_put_reserved_iova(struct iommu_domain *domain, phys_addr_t addr);
 #else
 
 static inline int
@@ -55,5 +83,15 @@  iommu_alloc_reserved_iova_domain(struct iommu_domain *domain,
 static inline void
 iommu_free_reserved_iova_domain(struct iommu_domain *domain) {}
 
+static inline int iommu_get_reserved_iova(struct iommu_domain *domain,
+					  phys_addr_t addr, size_t size,
+					  int prot, dma_addr_t *iova)
+{
+	return -ENOENT;
+}
+
+static inline void iommu_put_reserved_iova(struct iommu_domain *domain,
+					   phys_addr_t addr) {}
+
 #endif	/* CONFIG_IOMMU_DMA_RESERVED */
 #endif	/* __DMA_RESERVED_IOMMU_H */