@@ -113,6 +113,7 @@ static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
u32 duty, val;
duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
+ duty = (1U << PWM_SIFIVE_CMPWIDTH) - 1 - duty;
state->enabled = duty > 0;
@@ -123,11 +124,10 @@ static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
state->period = ddata->real_period;
state->duty_cycle =
(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
- state->polarity = PWM_POLARITY_INVERSED;
+ state->polarity = PWM_POLARITY_NORMAL;
return 0;
}
-
static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
@@ -139,7 +139,7 @@ static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
int ret = 0;
u32 frac;
- if (state->polarity != PWM_POLARITY_INVERSED)
+ if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
cur_state = pwm->state;
@@ -159,6 +159,7 @@ static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
/* The hardware cannot generate a 100% duty cycle */
frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
+ frac = (1U << PWM_SIFIVE_CMPWIDTH) - 1 - frac;
mutex_lock(&ddata->lock);
if (state->period != ddata->approx_period) {