Message ID | 20231212204647.2170650-2-sagis@google.com |
---|---|
State | New |
Headers | show |
Series | TDX KVM selftests | expand |
On 12/12/2023 12:46 PM, Sagi Shahar wrote: > From: Ackerley Tng <ackerleytng@google.com> > > One-to-one GVA to GPA mappings can be used in the guest to set up boot > sequences during which paging is enabled, hence requiring a transition > from using physical to virtual addresses in consecutive instructions. > > Signed-off-by: Ackerley Tng <ackerleytng@google.com> > Signed-off-by: Ryan Afranji <afranji@google.com> > Signed-off-by: Sagi Shahar <sagis@google.com> > --- > .../selftests/kvm/include/kvm_util_base.h | 2 + > tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++--- > 2 files changed, 55 insertions(+), 10 deletions(-) > > diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h > index 1426e88ebdc7..c2e5c5f25dfc 100644 > --- a/tools/testing/selftests/kvm/include/kvm_util_base.h > +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h > @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); > vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, > enum kvm_mem_region_type type); > vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); > +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, > + vm_vaddr_t vaddr_min, uint32_t data_memslot); > vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); > vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, > enum kvm_mem_region_type type); > diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c > index febc63d7a46b..4f1ae0f1eef0 100644 > --- a/tools/testing/selftests/kvm/lib/kvm_util.c > +++ b/tools/testing/selftests/kvm/lib/kvm_util.c > @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, > return pgidx_start * vm->page_size; > } > > +/* > + * VM Virtual Address Allocate Shared/Encrypted > + * > + * Input Args: > + * vm - Virtual Machine > + * sz - Size in bytes > + * vaddr_min - Minimum starting virtual address > + * paddr_min - Minimum starting physical address > + * data_memslot - memslot number to allocate in > + * encrypt - Whether the region should be handled as encrypted > + * > + * Output Args: None > + * > + * Return: > + * Starting guest virtual address > + * > + * Allocates at least sz bytes within the virtual address space of the vm > + * given by vm. The allocated bytes are mapped to a virtual address >= > + * the address given by vaddr_min. Note that each allocation uses a > + * a unique set of pages, with the minimum real allocation being at least > + * a page. > + */ > static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > - vm_vaddr_t vaddr_min, > - enum kvm_mem_region_type type, > - bool encrypt) > + vm_vaddr_t vaddr_min, vm_paddr_t paddr_min, > + uint32_t data_memslot, bool encrypt) > { > uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); > > virt_pgd_alloc(vm); > - vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, > - KVM_UTIL_MIN_PFN * vm->page_size, > - vm->memslots[type], encrypt); > + vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min, > + data_memslot, encrypt); > > /* > * Find an unused range of virtual page addresses of at least > @@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > > /* Map the virtual pages. */ > for (vm_vaddr_t vaddr = vaddr_start; pages > 0; > - pages--, vaddr += vm->page_size, paddr += vm->page_size) { > - > + pages--, vaddr += vm->page_size, paddr += vm->page_size) { > virt_pg_map(vm, vaddr, paddr); > > sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); > @@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, > enum kvm_mem_region_type type) > { > - return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected); > + return ____vm_vaddr_alloc(vm, sz, vaddr_min, > + KVM_UTIL_MIN_PFN * vm->page_size, > + vm->memslots[type], vm->protected); > } > > vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) > { > - return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false); > + return ____vm_vaddr_alloc(vm, sz, vaddr_min, > + KVM_UTIL_MIN_PFN * vm->page_size, > + vm->memslots[MEM_REGION_TEST_DATA], false); > } > > /* > @@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) > return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); > } > > +/** > + * Allocate memory in @vm of size @sz in memslot with id @data_memslot, > + * beginning with the desired address of @vaddr_min. > + * > + * If there isn't enough memory at @vaddr_min, find the next possible address > + * that can meet the requested size in the given memslot. > + * > + * Return the address where the memory is allocated. > + */ > +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, > + vm_vaddr_t vaddr_min, uint32_t data_memslot) > +{ > + vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min, > + (vm_paddr_t)vaddr_min, data_memslot, > + vm->protected); > + TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva)); By 1to1, do you mean virtual address=physical address?, community tends to call this identity mapping. Examples (function name): create_identity_mapping_pagetables() hellcreek_setup_tc_identity_mapping() identity_mapping_add() > + > + return gva; > +} > + > /* > * VM Virtual Address Allocate Pages > *
On Tue, Feb 20, 2024 at 7:43 PM Binbin Wu <binbin.wu@linux.intel.com> wrote: > > > > On 12/13/2023 4:46 AM, Sagi Shahar wrote: > > From: Ackerley Tng <ackerleytng@google.com> > > > > One-to-one GVA to GPA mappings can be used in the guest to set up boot > > sequences during which paging is enabled, hence requiring a transition > > from using physical to virtual addresses in consecutive instructions. > > > > Signed-off-by: Ackerley Tng <ackerleytng@google.com> > > Signed-off-by: Ryan Afranji <afranji@google.com> > > Signed-off-by: Sagi Shahar <sagis@google.com> > > --- > > .../selftests/kvm/include/kvm_util_base.h | 2 + > > tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++--- > > 2 files changed, 55 insertions(+), 10 deletions(-) > > > > diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h > > index 1426e88ebdc7..c2e5c5f25dfc 100644 > > --- a/tools/testing/selftests/kvm/include/kvm_util_base.h > > +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h > > @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); > > vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, > > enum kvm_mem_region_type type); > > vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); > > +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, > > + vm_vaddr_t vaddr_min, uint32_t data_memslot); > > vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); > > vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, > > enum kvm_mem_region_type type); > > diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c > > index febc63d7a46b..4f1ae0f1eef0 100644 > > --- a/tools/testing/selftests/kvm/lib/kvm_util.c > > +++ b/tools/testing/selftests/kvm/lib/kvm_util.c > > @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, > > return pgidx_start * vm->page_size; > > } > > > > +/* > > + * VM Virtual Address Allocate Shared/Encrypted > > + * > > + * Input Args: > > + * vm - Virtual Machine > > + * sz - Size in bytes > > + * vaddr_min - Minimum starting virtual address > > + * paddr_min - Minimum starting physical address > > + * data_memslot - memslot number to allocate in > > + * encrypt - Whether the region should be handled as encrypted > > + * > > + * Output Args: None > > + * > > + * Return: > > + * Starting guest virtual address > > + * > > + * Allocates at least sz bytes within the virtual address space of the vm > > + * given by vm. The allocated bytes are mapped to a virtual address >= > > + * the address given by vaddr_min. Note that each allocation uses a > > + * a unique set of pages, with the minimum real allocation being at least > > + * a page. > > + */ > > static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > > - vm_vaddr_t vaddr_min, > > - enum kvm_mem_region_type type, > > - bool encrypt) > > + vm_vaddr_t vaddr_min, vm_paddr_t paddr_min, > > + uint32_t data_memslot, bool encrypt) > > { > > uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); > > > > virt_pgd_alloc(vm); > > - vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, > > - KVM_UTIL_MIN_PFN * vm->page_size, > > - vm->memslots[type], encrypt); > > + vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min, > > + data_memslot, encrypt); > > > > /* > > * Find an unused range of virtual page addresses of at least > > @@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > > > > /* Map the virtual pages. */ > > for (vm_vaddr_t vaddr = vaddr_start; pages > 0; > > - pages--, vaddr += vm->page_size, paddr += vm->page_size) { > > - > > + pages--, vaddr += vm->page_size, paddr += vm->page_size) { > > virt_pg_map(vm, vaddr, paddr); > > > > sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); > > @@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, > > vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, > > enum kvm_mem_region_type type) > > { > > - return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected); > > + return ____vm_vaddr_alloc(vm, sz, vaddr_min, > > + KVM_UTIL_MIN_PFN * vm->page_size, > > + vm->memslots[type], vm->protected); > > } > > > > vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) > > { > > - return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false); > > + return ____vm_vaddr_alloc(vm, sz, vaddr_min, > > + KVM_UTIL_MIN_PFN * vm->page_size, > > + vm->memslots[MEM_REGION_TEST_DATA], false); > > } > > > > /* > > @@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) > > return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); > > } > > > > +/** > > + * Allocate memory in @vm of size @sz in memslot with id @data_memslot, > > + * beginning with the desired address of @vaddr_min. > > + * > > + * If there isn't enough memory at @vaddr_min, find the next possible address > > + * that can meet the requested size in the given memslot. > > + * > > + * Return the address where the memory is allocated. > > + */ > > +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, > > + vm_vaddr_t vaddr_min, uint32_t data_memslot) > > +{ > > + vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min, > > + (vm_paddr_t)vaddr_min, data_memslot, > > + vm->protected); > > + TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva)); > > How can this be guaranteed? > For ____vm_vaddr_alloc(), generically there is no enforcement about the > identity of virtual and physical address. The problem is that if the allocation won't be 1-to-1 the tests won't work. So we figured it's better to fail early. The way this is used in practice generally guarantees that the mapping can be 1-to-1 since we create these mappings at an early stage. > > > + > > + return gva; > > +} > > + > > /* > > * VM Virtual Address Allocate Pages > > * > >
diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h index 1426e88ebdc7..c2e5c5f25dfc 100644 --- a/tools/testing/selftests/kvm/include/kvm_util_base.h +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, + vm_vaddr_t vaddr_min, uint32_t data_memslot); vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type); diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c index febc63d7a46b..4f1ae0f1eef0 100644 --- a/tools/testing/selftests/kvm/lib/kvm_util.c +++ b/tools/testing/selftests/kvm/lib/kvm_util.c @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, return pgidx_start * vm->page_size; } +/* + * VM Virtual Address Allocate Shared/Encrypted + * + * Input Args: + * vm - Virtual Machine + * sz - Size in bytes + * vaddr_min - Minimum starting virtual address + * paddr_min - Minimum starting physical address + * data_memslot - memslot number to allocate in + * encrypt - Whether the region should be handled as encrypted + * + * Output Args: None + * + * Return: + * Starting guest virtual address + * + * Allocates at least sz bytes within the virtual address space of the vm + * given by vm. The allocated bytes are mapped to a virtual address >= + * the address given by vaddr_min. Note that each allocation uses a + * a unique set of pages, with the minimum real allocation being at least + * a page. + */ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, - vm_vaddr_t vaddr_min, - enum kvm_mem_region_type type, - bool encrypt) + vm_vaddr_t vaddr_min, vm_paddr_t paddr_min, + uint32_t data_memslot, bool encrypt) { uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); virt_pgd_alloc(vm); - vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, - KVM_UTIL_MIN_PFN * vm->page_size, - vm->memslots[type], encrypt); + vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min, + data_memslot, encrypt); /* * Find an unused range of virtual page addresses of at least @@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, /* Map the virtual pages. */ for (vm_vaddr_t vaddr = vaddr_start; pages > 0; - pages--, vaddr += vm->page_size, paddr += vm->page_size) { - + pages--, vaddr += vm->page_size, paddr += vm->page_size) { virt_pg_map(vm, vaddr, paddr); sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); @@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type) { - return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected); + return ____vm_vaddr_alloc(vm, sz, vaddr_min, + KVM_UTIL_MIN_PFN * vm->page_size, + vm->memslots[type], vm->protected); } vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) { - return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false); + return ____vm_vaddr_alloc(vm, sz, vaddr_min, + KVM_UTIL_MIN_PFN * vm->page_size, + vm->memslots[MEM_REGION_TEST_DATA], false); } /* @@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); } +/** + * Allocate memory in @vm of size @sz in memslot with id @data_memslot, + * beginning with the desired address of @vaddr_min. + * + * If there isn't enough memory at @vaddr_min, find the next possible address + * that can meet the requested size in the given memslot. + * + * Return the address where the memory is allocated. + */ +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, + vm_vaddr_t vaddr_min, uint32_t data_memslot) +{ + vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min, + (vm_paddr_t)vaddr_min, data_memslot, + vm->protected); + TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva)); + + return gva; +} + /* * VM Virtual Address Allocate Pages *