diff mbox

[v5,3/4] clk: introduce the common clock framework

Message ID 1330763341-3437-4-git-send-email-mturquette@linaro.org
State New
Headers show

Commit Message

Mike Turquette March 3, 2012, 8:29 a.m. UTC
The common clock framework defines a common struct clk useful across
most platforms as well as an implementation of the clk api that drivers
can use safely for managing clocks.

The net result is consolidation of many different struct clk definitions
and platform-specific clock framework implementations.

This patch introduces the common struct clk, struct clk_ops and an
implementation of the well-known clock api in include/clk/clk.h.
Platforms may define their own hardware-specific clock structure and
their own clock operation callbacks, so long as it wraps an instance of
struct clk_hw.

See Documentation/clk.txt for more details.

This patch is based on the work of Jeremy Kerr, which in turn was based
on the work of Ben Herrenschmidt.

Signed-off-by: Mike Turquette <mturquette@linaro.org>
Signed-off-by: Mike Turquette <mturquette@ti.com>
Cc: Jeremy Kerr <jeremy.kerr@canonical.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergman <arnd.bergmann@linaro.org>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Shawn Guo <shawn.guo@freescale.com>
Cc: Richard Zhao <richard.zhao@linaro.org>
Cc: Saravana Kannan <skannan@codeaurora.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Cc: Rob Herring <rob.herring@calxeda.com>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: Linus Walleij <linus.walleij@stericsson.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Amit Kucheria <amit.kucheria@linaro.org>
Cc: Deepak Saxena <dsaxena@linaro.org>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Andrew Lunn <andrew@lunn.ch>
---
 drivers/clk/Kconfig          |   28 +
 drivers/clk/Makefile         |    1 +
 drivers/clk/clk.c            | 1323 ++++++++++++++++++++++++++++++++++++++++++
 include/linux/clk-private.h  |   68 +++
 include/linux/clk-provider.h |  169 ++++++
 include/linux/clk.h          |   68 ++-
 6 files changed, 1652 insertions(+), 5 deletions(-)
 create mode 100644 drivers/clk/clk.c
 create mode 100644 include/linux/clk-private.h
 create mode 100644 include/linux/clk-provider.h

Comments

Sascha Hauer March 4, 2012, 11:52 a.m. UTC | #1
On Sat, Mar 03, 2012 at 09:14:43AM -0800, Turquette, Mike wrote:
> On Sat, Mar 3, 2012 at 5:31 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> > On Sat, Mar 03, 2012 at 12:29:00AM -0800, Mike Turquette wrote:
> >> The common clock framework defines a common struct clk useful across
> >> most platforms as well as an implementation of the clk api that drivers
> >> can use safely for managing clocks.
> >>
> >> The net result is consolidation of many different struct clk definitions
> >> and platform-specific clock framework implementations.
> >>
> >> This patch introduces the common struct clk, struct clk_ops and an
> >> implementation of the well-known clock api in include/clk/clk.h.
> >> Platforms may define their own hardware-specific clock structure and
> >> their own clock operation callbacks, so long as it wraps an instance of
> >> struct clk_hw.
> >>
> >> See Documentation/clk.txt for more details.
> >>
> >> This patch is based on the work of Jeremy Kerr, which in turn was based
> >> on the work of Ben Herrenschmidt.
> >>
> >> +
> >> +/**
> >> + * struct clk_hw - handle for traversing from a struct clk to its corresponding
> >> + * hardware-specific structure.  struct clk_hw should be declared within struct
> >> + * clk_foo and then referenced by the struct clk instance that uses struct
> >> + * clk_foo's clk_ops
> >> + *
> >> + * clk: pointer to the struct clk instance that points back to this struct
> >> + * clk_hw instance
> >> + */
> >> +struct clk_hw {
> >> +     struct clk *clk;
> >> +};
> >
> > The reason for doing this is that struct clk should be an opaque cookie
> > for both drivers and implementers of clocks. I recently had the idea whether
> > the roles of these two structs could be swapped. So instead of the above we
> > could do:
> >
> > struct clk {
> >        struct clk_hw *hw;
> > }
> 
> Firstly, struct clk is an opaque cookie for both drivers and
> implementers of clocks with this patchset.
> 
> Secondly, struct clk does indeed have a pointer to struct clk_hw.
> Refer to include/linux/clk-private.h in this patch.
> 
> The reference is cyclical.  A reference to struct clk can navigate to
> struct clk_foo via container_of (usually something like "#define
> to_clk_foo(_hw) container_of(_hw, struct clk_foo, hw)" where struct
> clk's pointer to it's .hw member is passed into one of the struct
> clk_ops callbacks.
> 
> Likewise if struct clk_foo needs the struct clk ptr for any reason
> then it can get it from foo->hw->clk.
> 
> I believe this patch already does what you suggest, but I might be
> missing your point.

In include/linux/clk-private.h you expose struct clk outside the core.
This has to be done to make static initializers possible. There is a big
warning in this file that it must not be included from files implementing
struct clk_ops. You can simply avoid this warning by declaring struct clk
with only a single member:

include/linux/clk.h:

struct clk {
	struct clk_internal *internal;
};

This way everybody knows struct clk (thus can embed it in their static
initializers), but doesn't know anything about the internal members. Now
in drivers/clk/clk.c you declare struct clk_internal exactly like struct
clk was declared before:

struct clk_internal {
	const char		*name;
	const struct clk_ops	*ops;
	struct clk_hw		*hw;
	struct clk		*parent;
	char			**parent_names;
	struct clk		**parents;
	u8			num_parents;
	unsigned long		rate;
	unsigned long		flags;
	unsigned int		enable_count;
	unsigned int		prepare_count;
	struct hlist_head	children;
	struct hlist_node	child_node;
	unsigned int		notifier_count;
#ifdef CONFIG_COMMON_CLK_DEBUG
	struct dentry		*dentry;
#endif
};

An instance of struct clk_internal will be allocated in
__clk_init/clk_register. Now the private data stays completely inside
the core and noone can abuse it.

With this __clk_init could be something like:

struct clk_initializer {
	const char		*name;
	const struct clk_ops	*ops;
	char			**parent_names;
	u8			num_parents;
	unsigned long		flags;
	struct clk		*clk;
};

void __clk_init(struct device *dev, struct clk_initializer *init);

I hope I made my intention a bit clearer.

Sascha
Mike Turquette March 5, 2012, 12:12 a.m. UTC | #2
On Sun, Mar 4, 2012 at 3:52 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> On Sat, Mar 03, 2012 at 09:14:43AM -0800, Turquette, Mike wrote:
>> On Sat, Mar 3, 2012 at 5:31 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
>> > On Sat, Mar 03, 2012 at 12:29:00AM -0800, Mike Turquette wrote:
>> >> The common clock framework defines a common struct clk useful across
>> >> most platforms as well as an implementation of the clk api that drivers
>> >> can use safely for managing clocks.
>> >>
>> >> The net result is consolidation of many different struct clk definitions
>> >> and platform-specific clock framework implementations.
>> >>
>> >> This patch introduces the common struct clk, struct clk_ops and an
>> >> implementation of the well-known clock api in include/clk/clk.h.
>> >> Platforms may define their own hardware-specific clock structure and
>> >> their own clock operation callbacks, so long as it wraps an instance of
>> >> struct clk_hw.
>> >>
>> >> See Documentation/clk.txt for more details.
>> >>
>> >> This patch is based on the work of Jeremy Kerr, which in turn was based
>> >> on the work of Ben Herrenschmidt.
>> >>
>> >> +
>> >> +/**
>> >> + * struct clk_hw - handle for traversing from a struct clk to its corresponding
>> >> + * hardware-specific structure.  struct clk_hw should be declared within struct
>> >> + * clk_foo and then referenced by the struct clk instance that uses struct
>> >> + * clk_foo's clk_ops
>> >> + *
>> >> + * clk: pointer to the struct clk instance that points back to this struct
>> >> + * clk_hw instance
>> >> + */
>> >> +struct clk_hw {
>> >> +     struct clk *clk;
>> >> +};
>> >
>> > The reason for doing this is that struct clk should be an opaque cookie
>> > for both drivers and implementers of clocks. I recently had the idea whether
>> > the roles of these two structs could be swapped. So instead of the above we
>> > could do:
>> >
>> > struct clk {
>> >        struct clk_hw *hw;
>> > }
>>
>> Firstly, struct clk is an opaque cookie for both drivers and
>> implementers of clocks with this patchset.
>>
>> Secondly, struct clk does indeed have a pointer to struct clk_hw.
>> Refer to include/linux/clk-private.h in this patch.
>>
>> The reference is cyclical.  A reference to struct clk can navigate to
>> struct clk_foo via container_of (usually something like "#define
>> to_clk_foo(_hw) container_of(_hw, struct clk_foo, hw)" where struct
>> clk's pointer to it's .hw member is passed into one of the struct
>> clk_ops callbacks.
>>
>> Likewise if struct clk_foo needs the struct clk ptr for any reason
>> then it can get it from foo->hw->clk.
>>
>> I believe this patch already does what you suggest, but I might be
>> missing your point.
>
> In include/linux/clk-private.h you expose struct clk outside the core.
> This has to be done to make static initializers possible. There is a big
> warning in this file that it must not be included from files implementing
> struct clk_ops. You can simply avoid this warning by declaring struct clk
> with only a single member:
>
> include/linux/clk.h:
>
> struct clk {
>        struct clk_internal *internal;
> };
>
> This way everybody knows struct clk (thus can embed it in their static
> initializers), but doesn't know anything about the internal members. Now
> in drivers/clk/clk.c you declare struct clk_internal exactly like struct
> clk was declared before:
>
> struct clk_internal {
>        const char              *name;
>        const struct clk_ops    *ops;
>        struct clk_hw           *hw;
>        struct clk              *parent;
>        char                    **parent_names;
>        struct clk              **parents;
>        u8                      num_parents;
>        unsigned long           rate;
>        unsigned long           flags;
>        unsigned int            enable_count;
>        unsigned int            prepare_count;
>        struct hlist_head       children;
>        struct hlist_node       child_node;
>        unsigned int            notifier_count;
> #ifdef CONFIG_COMMON_CLK_DEBUG
>        struct dentry           *dentry;
> #endif
> };
>
> An instance of struct clk_internal will be allocated in
> __clk_init/clk_register. Now the private data stays completely inside
> the core and noone can abuse it.

Hi Sascha,

I see the disconnect here.  For OMAP (and possibly other platforms) at
least some clock data is necessary during early boot, before the
regular allocation methods are available (timers for instance).  Due
to this my idea of static initialization was to take care of
everything that would normally require an allocator, which includes
the internals of struct clk; thus exposing struct clk is useful here
as you can still use the clock framework during very early boot.  Your
method above doesn't satisfy this requirement.  I'm not sure what the
purpose would be of statically allocating your version of struct clk,
which will ultimately need to allocate memory for the clock internals
anyways.  Can you elaborate the benefit of this approach over just
using the clk_foo_register functions?

Note that struct clk is still declared in clk.h (and clk-provider.h),
so platforms that have struct clk *clk declarations won't have a
problem.

Thanks much,
Mike

>
> With this __clk_init could be something like:
>
> struct clk_initializer {
>        const char              *name;
>        const struct clk_ops    *ops;
>        char                    **parent_names;
>        u8                      num_parents;
>        unsigned long           flags;
>        struct clk              *clk;
> };
>
> void __clk_init(struct device *dev, struct clk_initializer *init);
>
> I hope I made my intention a bit clearer.
>
> Sascha
>
> --
> Pengutronix e.K.                           |                             |
> Industrial Linux Solutions                 | http://www.pengutronix.de/  |
> Peiner Str. 6-8, 31137 Hildesheim, Germany | Phone: +49-5121-206917-0    |
> Amtsgericht Hildesheim, HRA 2686           | Fax:   +49-5121-206917-5555 |
Sascha Hauer March 5, 2012, 7:38 a.m. UTC | #3
On Sun, Mar 04, 2012 at 04:12:21PM -0800, Turquette, Mike wrote:
> >>
> >> I believe this patch already does what you suggest, but I might be
> >> missing your point.
> >
> > In include/linux/clk-private.h you expose struct clk outside the core.
> > This has to be done to make static initializers possible. There is a big
> > warning in this file that it must not be included from files implementing
> > struct clk_ops. You can simply avoid this warning by declaring struct clk
> > with only a single member:
> >
> > include/linux/clk.h:
> >
> > struct clk {
> >        struct clk_internal *internal;
> > };
> >
> > This way everybody knows struct clk (thus can embed it in their static
> > initializers), but doesn't know anything about the internal members. Now
> > in drivers/clk/clk.c you declare struct clk_internal exactly like struct
> > clk was declared before:
> >
> > struct clk_internal {
> >        const char              *name;
> >        const struct clk_ops    *ops;
> >        struct clk_hw           *hw;
> >        struct clk              *parent;
> >        char                    **parent_names;
> >        struct clk              **parents;
> >        u8                      num_parents;
> >        unsigned long           rate;
> >        unsigned long           flags;
> >        unsigned int            enable_count;
> >        unsigned int            prepare_count;
> >        struct hlist_head       children;
> >        struct hlist_node       child_node;
> >        unsigned int            notifier_count;
> > #ifdef CONFIG_COMMON_CLK_DEBUG
> >        struct dentry           *dentry;
> > #endif
> > };
> >
> > An instance of struct clk_internal will be allocated in
> > __clk_init/clk_register. Now the private data stays completely inside
> > the core and noone can abuse it.
> 
> Hi Sascha,
> 
> I see the disconnect here.  For OMAP (and possibly other platforms) at
> least some clock data is necessary during early boot, before the
> regular allocation methods are available (timers for instance).

We had this problem on i.MX aswell. It turned out that the timer clock
is the only clock that is needed so early. We solved this by moving the
clock init to the system timer init function.

> Due
> to this my idea of static initialization was to take care of
> everything that would normally require an allocator, which includes
> the internals of struct clk; thus exposing struct clk is useful here
> as you can still use the clock framework during very early boot.  Your
> method above doesn't satisfy this requirement.  I'm not sure what the
> purpose would be of statically allocating your version of struct clk,
> which will ultimately need to allocate memory for the clock internals
> anyways.  Can you elaborate the benefit of this approach over just
> using the clk_foo_register functions?

As said the benefit is that you do not have to expose the internal
layout of struct clk outside the clock framework. Note that in the
file you referenced here:

http://git.linaro.org/gitweb?p=people/mturquette/linux.git;a=blob;f=arch/arm/mach-omap2/clock44xx_data.c;h=7f833a7b2dca84a52c2bd1e7c8d9cfe560771258;hb=v3.3-rc5-clkv5-omap#l205

You violate what you have in a comment above clk-private.h:

/* __clk_init is only exposed via clk-private.h and is intended for use with
 * very large numbers of clocks that need to be statically initialized. It is
 * a layering violation to include clk-private.h from any code which implements
 * a clock's .ops; as such any statically initialized clock data MUST be in
 * separate C file from the logic that implements it's operations.
 */

Well, the file is work in progress, you probably fix this before sending
it out, but I bet people will include clk-private.h and nobody else
notices it.

Sascha
Mike Turquette March 5, 2012, 8:03 p.m. UTC | #4
On Sun, Mar 4, 2012 at 11:38 PM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> On Sun, Mar 04, 2012 at 04:12:21PM -0800, Turquette, Mike wrote:
>> >>
>> >> I believe this patch already does what you suggest, but I might be
>> >> missing your point.
>> >
>> > In include/linux/clk-private.h you expose struct clk outside the core.
>> > This has to be done to make static initializers possible. There is a big
>> > warning in this file that it must not be included from files implementing
>> > struct clk_ops. You can simply avoid this warning by declaring struct clk
>> > with only a single member:
>> >
>> > include/linux/clk.h:
>> >
>> > struct clk {
>> >        struct clk_internal *internal;
>> > };
>> >
>> > This way everybody knows struct clk (thus can embed it in their static
>> > initializers), but doesn't know anything about the internal members. Now
>> > in drivers/clk/clk.c you declare struct clk_internal exactly like struct
>> > clk was declared before:
>> >
>> > struct clk_internal {
>> >        const char              *name;
>> >        const struct clk_ops    *ops;
>> >        struct clk_hw           *hw;
>> >        struct clk              *parent;
>> >        char                    **parent_names;
>> >        struct clk              **parents;
>> >        u8                      num_parents;
>> >        unsigned long           rate;
>> >        unsigned long           flags;
>> >        unsigned int            enable_count;
>> >        unsigned int            prepare_count;
>> >        struct hlist_head       children;
>> >        struct hlist_node       child_node;
>> >        unsigned int            notifier_count;
>> > #ifdef CONFIG_COMMON_CLK_DEBUG
>> >        struct dentry           *dentry;
>> > #endif
>> > };
>> >
>> > An instance of struct clk_internal will be allocated in
>> > __clk_init/clk_register. Now the private data stays completely inside
>> > the core and noone can abuse it.
>>
>> Hi Sascha,
>>
>> I see the disconnect here.  For OMAP (and possibly other platforms) at
>> least some clock data is necessary during early boot, before the
>> regular allocation methods are available (timers for instance).
>
> We had this problem on i.MX aswell. It turned out that the timer clock
> is the only clock that is needed so early. We solved this by moving the
> clock init to the system timer init function.

When you say "mov[ed] the clock init to the system timer init
function" do you mean that you statically allocated struct clk and
used the clk framework api, or instead you just did some direct
register writes to initialize things properly?

>
>> Due
>> to this my idea of static initialization was to take care of
>> everything that would normally require an allocator, which includes
>> the internals of struct clk; thus exposing struct clk is useful here
>> as you can still use the clock framework during very early boot.  Your
>> method above doesn't satisfy this requirement.  I'm not sure what the
>> purpose would be of statically allocating your version of struct clk,
>> which will ultimately need to allocate memory for the clock internals
>> anyways.  Can you elaborate the benefit of this approach over just
>> using the clk_foo_register functions?
>
> As said the benefit is that you do not have to expose the internal
> layout of struct clk outside the clock framework. Note that in the

That is a benefit for sure, but if it does not solve the problem of
allowing for static allocation then we still have an issue.

> file you referenced here:
>
> http://git.linaro.org/gitweb?p=people/mturquette/linux.git;a=blob;f=arch/arm/mach-omap2/clock44xx_data.c;h=7f833a7b2dca84a52c2bd1e7c8d9cfe560771258;hb=v3.3-rc5-clkv5-omap#l205
>
> You violate what you have in a comment above clk-private.h:
>
> /* __clk_init is only exposed via clk-private.h and is intended for use with
>  * very large numbers of clocks that need to be statically initialized. It is
>  * a layering violation to include clk-private.h from any code which implements
>  * a clock's .ops; as such any statically initialized clock data MUST be in
>  * separate C file from the logic that implements it's operations.
>  */
>
> Well, the file is work in progress, you probably fix this before sending
> it out, but I bet people will include clk-private.h and nobody else
> notices it.

clock44xx_data.c does not violate that rule.  None of the logic that
implements ops for those clocks is present clock44xx_data.c.  All of
the code in that file is simply initialization and registration of
OMAP4 clocks.  Many of the clocks are basic clock types (divider,
multiplexer and fixed-rate are used in that file) with protected code
drivers/clk/clk-*.c and the remaining clocks are of the struct
clk_hw_omap variety, which has code spread across several files:

arch/arm/mach-omap2/clock.c
arch/arm/mach-omap2/clock.h
arch/arm/mach-omap2/clkt_dpll.c
arch/arm/mach-omap2/clkt_clksel.c
arch/arm/mach-omap2/dpll3xxx.c
arch/arm/mach-omap2/dpll4xxx.c

All of the above files include linux/clk-provider.h, not
linux/clk-private.h.  That code makes heavy use of the
__clk_get_whatever helpers and shows how a platform might honor the
layer of separation between struct clk and stuct clk_ops/struct
clk_foo.  You are correct that the code is a work-in-progress, but
there are no layering violations that I can see.

I also think we are talking past each other to some degree.  One point
I would like to make (and maybe you already know this from code
review) is that it is unnecessary to have pointers to your parent
struct clk*'s when either initializing or registering your clocks.  In
fact the existing clk_register_foo functions don't even allow you to
pass in parent pointers and rely wholly on string name matching.  I
just wanted to point that out in case it went unnoticed, as it is a
new way of doing things from the previous series and was born out of
Thomas' review of V4 and multi-parent handling.  This also keeps
device-tree in mind where we might not know the struct clk *pointer at
compile time for "connecting" discrete devices.

Thanks,
Mike

>
> Sascha
>
> --
> Pengutronix e.K.                           |                             |
> Industrial Linux Solutions                 | http://www.pengutronix.de/  |
> Peiner Str. 6-8, 31137 Hildesheim, Germany | Phone: +49-5121-206917-0    |
> Amtsgericht Hildesheim, HRA 2686           | Fax:   +49-5121-206917-5555 |
diff mbox

Patch

diff --git a/drivers/clk/Kconfig b/drivers/clk/Kconfig
index 3912576..18eb8c2 100644
--- a/drivers/clk/Kconfig
+++ b/drivers/clk/Kconfig
@@ -11,3 +11,31 @@  config HAVE_MACH_CLKDEV
 
 config HAVE_CLK_PREPARE
 	bool
+
+menuconfig COMMON_CLK
+	bool "Common Clock Framework"
+	select HAVE_CLK_PREPARE
+	---help---
+	  The common clock framework is a single definition of struct
+	  clk, useful across many platforms, as well as an
+	  implementation of the clock API in include/linux/clk.h.
+	  Architectures utilizing the common struct clk should select
+	  this automatically, but it may be necessary to manually select
+	  this option for loadable modules requiring the common clock
+	  framework.
+
+	  If in doubt, say "N".
+
+if COMMON_CLK
+
+config COMMON_CLK_DEBUG
+	bool "DebugFS representation of clock tree"
+	depends on COMMON_CLK
+	---help---
+	  Creates a directory hierchy in debugfs for visualizing the clk
+	  tree structure.  Each directory contains read-only members
+	  that export information specific to that clk node: clk_rate,
+	  clk_flags, clk_prepare_count, clk_enable_count &
+	  clk_notifier_count.
+
+endif
diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile
index 07613fa..ff362c4 100644
--- a/drivers/clk/Makefile
+++ b/drivers/clk/Makefile
@@ -1,2 +1,3 @@ 
 
 obj-$(CONFIG_CLKDEV_LOOKUP)	+= clkdev.o
+obj-$(CONFIG_COMMON_CLK)	+= clk.o
diff --git a/drivers/clk/clk.c b/drivers/clk/clk.c
new file mode 100644
index 0000000..b979d74
--- /dev/null
+++ b/drivers/clk/clk.c
@@ -0,0 +1,1323 @@ 
+/*
+ * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
+ * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Standard functionality for the common clock API.  See Documentation/clk.txt
+ */
+
+#include <linux/clk-private.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/spinlock.h>
+#include <linux/err.h>
+#include <linux/list.h>
+#include <linux/slab.h>
+
+static DEFINE_SPINLOCK(enable_lock);
+static DEFINE_MUTEX(prepare_lock);
+
+static HLIST_HEAD(clk_root_list);
+static HLIST_HEAD(clk_orphan_list);
+static LIST_HEAD(clk_notifier_list);
+
+/***        debugfs support        ***/
+
+#ifdef CONFIG_COMMON_CLK_DEBUG
+#include <linux/debugfs.h>
+
+static struct dentry *rootdir;
+static struct dentry *orphandir;
+static int inited = 0;
+
+/* caller must hold prepare_lock */
+static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
+{
+	struct dentry *d;
+	int ret = -ENOMEM;
+
+	if (!clk || !pdentry) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	d = debugfs_create_dir(clk->name, pdentry);
+	if (!d)
+		goto out;
+
+	clk->dentry = d;
+
+	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
+			(u32 *)&clk->rate);
+	if (!d)
+		goto err_out;
+
+	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
+			(u32 *)&clk->flags);
+	if (!d)
+		goto err_out;
+
+	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
+			(u32 *)&clk->prepare_count);
+	if (!d)
+		goto err_out;
+
+	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
+			(u32 *)&clk->enable_count);
+	if (!d)
+		goto err_out;
+
+	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
+			(u32 *)&clk->notifier_count);
+	if (!d)
+		goto err_out;
+
+	ret = 0;
+	goto out;
+
+err_out:
+	debugfs_remove(clk->dentry);
+out:
+	return ret;
+}
+
+/* caller must hold prepare_lock */
+static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
+{
+	struct clk *child;
+	struct hlist_node *tmp;
+	int ret = -EINVAL;;
+
+	if (!clk || !pdentry)
+		goto out;
+
+	ret = clk_debug_create_one(clk, pdentry);
+
+	if (ret)
+		goto out;
+
+	hlist_for_each_entry(child, tmp, &clk->children, child_node)
+		clk_debug_create_subtree(child, clk->dentry);
+
+	ret = 0;
+out:
+	return ret;
+}
+
+/**
+ * clk_debug_register - add a clk node to the debugfs clk tree
+ * @clk: the clk being added to the debugfs clk tree
+ *
+ * Dynamically adds a clk to the debugfs clk tree if debugfs has been
+ * initialized.  Otherwise it bails out early since the debugfs clk tree
+ * will be created lazily by clk_debug_init as part of a late_initcall.
+ *
+ * Caller must hold prepare_lock.  Only clk_init calls this function (so
+ * far) so this is taken care.
+ */
+static int clk_debug_register(struct clk *clk)
+{
+	struct clk *parent;
+	struct dentry *pdentry;
+	int ret = 0;
+
+	if (!inited)
+		goto out;
+
+	parent = clk->parent;
+
+	/*
+	 * Check to see if a clk is a root clk.  Also check that it is
+	 * safe to add this clk to debugfs
+	 */
+	if (!parent)
+		if (clk->flags & CLK_IS_ROOT)
+			pdentry = rootdir;
+		else
+			pdentry = orphandir;
+	else
+		if (parent->dentry)
+			pdentry = parent->dentry;
+		else
+			goto out;
+
+	ret = clk_debug_create_subtree(clk, pdentry);
+
+out:
+	return ret;
+}
+
+/**
+ * clk_debug_init - lazily create the debugfs clk tree visualization
+ *
+ * clks are often initialized very early during boot before memory can
+ * be dynamically allocated and well before debugfs is setup.
+ * clk_debug_init walks the clk tree hierarchy while holding
+ * prepare_lock and creates the topology as part of a late_initcall,
+ * thus insuring that clks initialized very early will still be
+ * represented in the debugfs clk tree.  This function should only be
+ * called once at boot-time, and all other clks added dynamically will
+ * be done so with clk_debug_register.
+ */
+static int __init clk_debug_init(void)
+{
+	struct clk *clk;
+	struct hlist_node *tmp;
+
+	rootdir = debugfs_create_dir("clk", NULL);
+
+	if (!rootdir)
+		return -ENOMEM;
+
+	orphandir = debugfs_create_dir("orphans", rootdir);
+
+	if (!orphandir)
+		return -ENOMEM;
+
+	mutex_lock(&prepare_lock);
+
+	hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
+		clk_debug_create_subtree(clk, rootdir);
+
+	hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
+		clk_debug_create_subtree(clk, orphandir);
+
+	inited = 1;
+
+	mutex_unlock(&prepare_lock);
+
+	return 0;
+}
+late_initcall(clk_debug_init);
+#else
+static inline int clk_debug_register(struct clk *clk) { return 0; }
+#endif /* CONFIG_COMMON_CLK_DEBUG */
+
+/***    helper functions   ***/
+
+inline const char *__clk_get_name(struct clk *clk)
+{
+	return !clk ? NULL : clk->name;
+}
+
+inline struct clk_hw *__clk_get_hw(struct clk *clk)
+{
+	return !clk ? NULL : clk->hw;
+}
+
+inline u8 __clk_get_num_parents(struct clk *clk)
+{
+	return !clk ? -EINVAL : clk->num_parents;
+}
+
+inline struct clk *__clk_get_parent(struct clk *clk)
+{
+	return !clk ? NULL : clk->parent;
+}
+
+inline unsigned long __clk_get_rate(struct clk *clk)
+{
+	return !clk ? -EINVAL : clk->rate;
+}
+
+inline unsigned long __clk_get_flags(struct clk *clk)
+{
+	return !clk ? -EINVAL : clk->flags;
+}
+
+static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
+{
+	struct clk *child;
+	struct clk *ret;
+	struct hlist_node *tmp;
+
+	if (!strcmp(clk->name, name))
+		return clk;
+
+	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
+		ret = __clk_lookup_subtree(name, child);
+		if (ret)
+			return ret;
+	}
+
+	return NULL;
+}
+
+struct clk *__clk_lookup(const char *name)
+{
+	struct clk *root_clk;
+	struct clk *ret;
+	struct hlist_node *tmp;
+
+	/* search the 'proper' clk tree first */
+	hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
+		ret = __clk_lookup_subtree(name, root_clk);
+		if (ret)
+			return ret;
+	}
+
+	/* if not found, then search the orphan tree */
+	hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
+		ret = __clk_lookup_subtree(name, root_clk);
+		if (ret)
+			return ret;
+	}
+
+	return NULL;
+}
+
+/***        clk api        ***/
+
+void __clk_unprepare(struct clk *clk)
+{
+	if (!clk)
+		return;
+
+	if (WARN_ON(clk->prepare_count == 0))
+		return;
+
+	if (--clk->prepare_count > 0)
+		return;
+
+	WARN_ON(clk->enable_count > 0);
+
+	if (clk->ops->unprepare)
+		clk->ops->unprepare(clk->hw);
+
+	__clk_unprepare(clk->parent);
+}
+
+/**
+ * clk_unprepare - undo preparation of a clock source
+ * @clk: the clk being unprepare
+ *
+ * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
+ * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
+ * if the operation may sleep.  One example is a clk which is accessed over
+ * I2c.  In the complex case a clk gate operation may require a fast and a slow
+ * part.  It is this reason that clk_unprepare and clk_disable are not mutually
+ * exclusive.  In fact clk_disable must be called before clk_unprepare.
+ */
+void clk_unprepare(struct clk *clk)
+{
+	mutex_lock(&prepare_lock);
+	__clk_unprepare(clk);
+	mutex_unlock(&prepare_lock);
+}
+EXPORT_SYMBOL_GPL(clk_unprepare);
+
+int __clk_prepare(struct clk *clk)
+{
+	int ret = 0;
+
+	if (!clk)
+		return 0;
+
+	if (clk->prepare_count == 0) {
+		ret = __clk_prepare(clk->parent);
+		if (ret)
+			return ret;
+
+		if (clk->ops->prepare) {
+			ret = clk->ops->prepare(clk->hw);
+			if (ret) {
+				__clk_unprepare(clk->parent);
+				return ret;
+			}
+		}
+	}
+
+	clk->prepare_count++;
+
+	return 0;
+}
+
+/**
+ * clk_prepare - prepare a clock source
+ * @clk: the clk being prepared
+ *
+ * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
+ * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
+ * operation may sleep.  One example is a clk which is accessed over I2c.  In
+ * the complex case a clk ungate operation may require a fast and a slow part.
+ * It is this reason that clk_prepare and clk_enable are not mutually
+ * exclusive.  In fact clk_prepare must be called before clk_enable.
+ * Returns 0 on success, -EERROR otherwise.
+ */
+int clk_prepare(struct clk *clk)
+{
+	int ret;
+
+	mutex_lock(&prepare_lock);
+	ret = __clk_prepare(clk);
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_prepare);
+
+static void __clk_disable(struct clk *clk)
+{
+	if (!clk)
+		return;
+
+	if (WARN_ON(clk->enable_count == 0))
+		return;
+
+	if (--clk->enable_count > 0)
+		return;
+
+	if (clk->ops->disable)
+		clk->ops->disable(clk->hw);
+
+	if (clk->parent)
+		__clk_disable(clk->parent);
+}
+
+/**
+ * clk_disable - gate a clock
+ * @clk: the clk being gated
+ *
+ * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
+ * a simple case, clk_disable can be used instead of clk_unprepare to gate a
+ * clk if the operation is fast and will never sleep.  One example is a
+ * SoC-internal clk which is controlled via simple register writes.  In the
+ * complex case a clk gate operation may require a fast and a slow part.  It is
+ * this reason that clk_unprepare and clk_disable are not mutually exclusive.
+ * In fact clk_disable must be called before clk_unprepare.
+ */
+void clk_disable(struct clk *clk)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&enable_lock, flags);
+	__clk_disable(clk);
+	spin_unlock_irqrestore(&enable_lock, flags);
+}
+EXPORT_SYMBOL_GPL(clk_disable);
+
+static int __clk_enable(struct clk *clk)
+{
+	int ret = 0;
+
+	if (!clk)
+		return 0;
+
+	if (WARN_ON(clk->prepare_count == 0))
+		return -ESHUTDOWN;
+
+	if (clk->enable_count == 0) {
+		if (clk->parent)
+			ret = __clk_enable(clk->parent);
+
+		if (ret)
+			return ret;
+
+		if (clk->ops->enable) {
+			ret = clk->ops->enable(clk->hw);
+			if (ret) {
+				__clk_disable(clk->parent);
+				return ret;
+			}
+		}
+	}
+
+	clk->enable_count++;
+	return 0;
+}
+
+/**
+ * clk_enable - ungate a clock
+ * @clk: the clk being ungated
+ *
+ * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
+ * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
+ * if the operation will never sleep.  One example is a SoC-internal clk which
+ * is controlled via simple register writes.  In the complex case a clk ungate
+ * operation may require a fast and a slow part.  It is this reason that
+ * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
+ * must be called before clk_enable.  Returns 0 on success, -EERROR
+ * otherwise.
+ */
+int clk_enable(struct clk *clk)
+{
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&enable_lock, flags);
+	ret = __clk_enable(clk);
+	spin_unlock_irqrestore(&enable_lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_enable);
+
+/**
+ * clk_get_rate - return the rate of clk
+ * @clk: the clk whose rate is being returned
+ *
+ * Simply returns the cached rate of the clk.  Does not query the hardware.  If
+ * clk is NULL then returns -EINVAL.
+ */
+unsigned long clk_get_rate(struct clk *clk)
+{
+	unsigned long rate;
+
+	mutex_lock(&prepare_lock);
+	rate = __clk_get_rate(clk);
+	mutex_unlock(&prepare_lock);
+
+	return rate;
+}
+EXPORT_SYMBOL_GPL(clk_get_rate);
+
+/**
+ * __clk_round_rate - round the given rate for a clk
+ * @clk: round the rate of this clock
+ *
+ * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
+ */
+unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
+{
+	if (!clk && !clk->ops->round_rate)
+		return -EINVAL;
+
+	return clk->ops->round_rate(clk->hw, rate, NULL);
+}
+
+/**
+ * clk_round_rate - round the given rate for a clk
+ * @clk: the clk for which we are rounding a rate
+ * @rate: the rate which is to be rounded
+ *
+ * Takes in a rate as input and rounds it to a rate that the clk can actually
+ * use which is then returned.  If clk doesn't support round_rate operation
+ * then the rate passed in is returned.
+ */
+long clk_round_rate(struct clk *clk, unsigned long rate)
+{
+	unsigned long ret = rate;
+
+	mutex_lock(&prepare_lock);
+	if (clk && clk->ops->round_rate)
+		ret = __clk_round_rate(clk, rate);
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_round_rate);
+
+/**
+ * __clk_notify - call clk notifier chain
+ * @clk: struct clk * that is changing rate
+ * @msg: clk notifier type (see include/linux/clk.h)
+ * @old_rate: old clk rate
+ * @new_rate: new clk rate
+ *
+ * Triggers a notifier call chain on the clk rate-change notification
+ * for 'clk'.  Passes a pointer to the struct clk and the previous
+ * and current rates to the notifier callback.  Intended to be called by
+ * internal clock code only.  Returns NOTIFY_DONE from the last driver
+ * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
+ * a driver returns that.
+ */
+static int __clk_notify(struct clk *clk, unsigned long msg,
+		unsigned long old_rate, unsigned long new_rate)
+{
+	struct clk_notifier *cn;
+	struct clk_notifier_data cnd;
+	int ret = NOTIFY_DONE;
+
+	cnd.clk = clk;
+	cnd.old_rate = old_rate;
+	cnd.new_rate = new_rate;
+
+	list_for_each_entry(cn, &clk_notifier_list, node) {
+		if (cn->clk == clk) {
+			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
+					&cnd);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+/**
+ * __clk_recalc_rates
+ * @clk: first clk in the subtree
+ * @msg: notification type (see include/linux/clk.h)
+ *
+ * Walks the subtree of clks starting with clk and recalculates rates as it
+ * goes.  Note that if a clk does not implement the recalc_rate operation then
+ * propagation of that subtree stops and all of that clks children will not
+ * have their rates updated.
+ *
+ * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
+ * if necessary.
+ *
+ * Caller must hold prepare_lock.
+ */
+static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
+{
+	unsigned long old_rate;
+	unsigned long parent_rate = 0;
+	struct hlist_node *tmp;
+	struct clk *child;
+
+	old_rate = clk->rate;
+
+	if (clk->parent)
+		parent_rate = clk->parent->rate;
+
+	if (clk->ops->recalc_rate)
+		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
+	else
+		clk->rate = parent_rate;
+
+	/*
+	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
+	 * & ABORT_RATE_CHANGE notifiers
+	 */
+	if (clk->notifier_count && msg)
+		__clk_notify(clk, msg, old_rate, clk->rate);
+
+	hlist_for_each_entry(child, tmp, &clk->children, child_node)
+		__clk_recalc_rates(child, msg);
+}
+
+/**
+ * __clk_speculate_rates
+ * @clk: first clk in the subtree
+ * @parent_rate: the "future" rate of clk's parent
+ *
+ * Walks the subtree of clks starting with clk, speculating rates as it
+ * goes and firing off PRE_RATE_CHANGE notifications as necessary.
+ *
+ * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
+ * pre-rate change notifications and returns early if no clks in the
+ * subtree have subscribed to the notifications.
+ *
+ * Caller must hold prepare_lock.
+ */
+static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
+{
+	struct hlist_node *tmp;
+	struct clk *child;
+	unsigned long new_rate;
+	int ret = NOTIFY_DONE;
+
+	if (!clk->ops->recalc_rate)
+		goto out;
+
+	new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
+
+	/* abort the rate change if a driver returns NOTIFY_BAD */
+	if (clk->notifier_count)
+		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
+
+	if (ret == NOTIFY_BAD)
+		goto out;
+
+	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
+		ret = __clk_speculate_rates(child, new_rate);
+		if (ret == NOTIFY_BAD)
+			break;
+	}
+
+out:
+	return ret;
+}
+
+/**
+ * DOC: Using the CLK_SET_RATE_PARENT flag
+ *
+ * __clk_set_rate changes the child's rate before the parent's to more
+ * easily handle failure conditions.
+ *
+ * This means clk might run out of spec for a short time if its rate is
+ * increased before the parent's rate is updated.
+ *
+ * To prevent this consider setting the CLK_SET_RATE_GATE flag on any
+ * clk where you also set the CLK_SET_RATE_PARENT flag
+ *
+ * PRE_RATE_CHANGE notifications are supposed to stack as a rate change
+ * request propagates up the clk tree.  This reflects the different
+ * rates that a downstream clk might experience if left enabled while
+ * upstream parents change their rates.
+ */
+static struct clk *__clk_set_rate(struct clk *clk, unsigned long rate)
+{
+	struct clk *fail_clk = NULL;
+	int ret = NOTIFY_DONE;
+	unsigned long old_rate = clk->rate;
+	unsigned long new_rate;
+	unsigned long parent_old_rate;
+	unsigned long parent_new_rate = 0;
+	struct clk *child;
+	struct hlist_node *tmp;
+
+	/* bail early if we can't change rate while clk is enabled */
+	if ((clk->flags & CLK_SET_RATE_GATE) && clk->enable_count)
+		return clk;
+
+	/* find the new rate and see if parent rate should change too */
+	WARN_ON(!clk->ops->round_rate);
+
+	new_rate = clk->ops->round_rate(clk->hw, rate, &parent_new_rate);
+
+	/* NOTE: pre-rate change notifications will stack */
+	if (clk->notifier_count)
+		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
+
+	if (ret == NOTIFY_BAD)
+		return clk;
+
+	/* speculate rate changes down the tree */
+	hlist_for_each_entry(child, tmp, &clk->children, child_node) {
+		ret = __clk_speculate_rates(child, new_rate);
+		if (ret == NOTIFY_BAD)
+			return clk;
+	}
+
+	/* change the rate of this clk */
+	if (clk->ops->set_rate)
+		ret = clk->ops->set_rate(clk->hw, new_rate);
+
+	if (ret == NOTIFY_BAD)
+		return clk;
+
+	/*
+	 * change the rate of the parent clk if necessary
+	 *
+	 * hitting the nested 'if' path implies we have hit a .set_rate
+	 * failure somewhere upstream while propagating __clk_set_rate
+	 * up the clk tree.  roll back the clk rates one by one and
+	 * return the pointer to the clk that failed.  clk_set_rate will
+	 * use the pointer to propagate a rate-change abort notifier
+	 * from the "highest" point.
+	 */
+	if ((clk->flags & CLK_SET_RATE_PARENT) && parent_new_rate) {
+		parent_old_rate = clk->parent->rate;
+		fail_clk = __clk_set_rate(clk->parent, parent_new_rate);
+
+		/* roll back changes if parent rate change failed */
+		if (fail_clk) {
+			pr_warn("%s: failed to set parent %s rate to %lu\n",
+					__func__, fail_clk->name,
+					parent_new_rate);
+
+			/*
+			 * Send PRE_RATE_CHANGE notifiers down the tree
+			 * again, since we're rolling back the rate
+			 * changes due to the abort.
+			 *
+			 * Ignore any NOTIFY_BAD's since this *is* the
+			 * exception handler.
+			 *
+			 * NOTE: pre-rate change notifications will stack
+			 */
+			__clk_speculate_rates(clk, clk->parent->rate);
+
+			clk->ops->set_rate(clk->hw, old_rate);
+		}
+		return fail_clk;
+	}
+
+	/*
+	 * set clk's rate & recalculate the rates of clk's children
+	 *
+	 * hitting this path implies we have successfully finished
+	 * propagating recursive calls to __clk_set_rate up the clk tree
+	 * (if necessary) and it is safe to propagate __clk_recalc_rates
+	 * and post-rate change notifiers down the clk tree from this
+	 * point.
+	 */
+	__clk_recalc_rates(clk, POST_RATE_CHANGE);
+
+	return NULL;
+}
+
+/**
+ * clk_set_rate - specify a new rate for clk
+ * @clk: the clk whose rate is being changed
+ * @rate: the new rate for clk
+ *
+ * In the simplest case clk_set_rate will only change the rate of clk.
+ *
+ * If clk has the CLK_SET_RATE_GATE flag set and it is enabled this call
+ * will fail; only when the clk is disabled will it be able to change
+ * its rate.
+ *
+ * Setting the CLK_SET_RATE_PARENT flag allows clk_set_rate to
+ * recursively propagate up to clk's parent; whether or not this happens
+ * depends on the outcome of clk's .round_rate implementation.  If
+ * *parent_rate is 0 after calling .round_rate then upstream parent
+ * propagation is ignored.  If *parent_rate comes back with a new rate
+ * for clk's parent then we propagate up to clk's parent and set it's
+ * rate.  Upward propagation will continue until either a clk does not
+ * support the CLK_SET_RATE_PARENT flag or .round_rate stops requesting
+ * changes to clk's parent_rate.  If there is a failure during upstream
+ * propagation then clk_set_rate will unwind and restore each clk's rate
+ * that had been successfully changed.  Afterwards a rate change abort
+ * notification will be propagated downstream, starting from the clk
+ * that failed.
+ *
+ * At the end of all of the rate setting, clk_set_rate internally calls
+ * __clk_recalc_rates and propagates the rate changes downstream,
+ * starting from the highest clk whose rate was changed.  This has the
+ * added benefit of propagating post-rate change notifiers.
+ *
+ * Note that while post-rate change and rate change abort notifications
+ * are guaranteed to be sent to a clk only once per call to
+ * clk_set_rate, pre-change notifications will be sent for every clk
+ * whose rate is changed.  Stacking pre-change notifications is noisy
+ * for the drivers subscribed to them, but this allows drivers to react
+ * to intermediate clk rate changes up until the point where the final
+ * rate is achieved at the end of upstream propagation.
+ *
+ * Returns 0 on success, -EERROR otherwise.
+ */
+int clk_set_rate(struct clk *clk, unsigned long rate)
+{
+	struct clk *fail_clk;
+	int ret = 0;
+
+	/* prevent racing with updates to the clock topology */
+	mutex_lock(&prepare_lock);
+
+	/* bail early if nothing to do */
+	if (rate == clk->rate)
+		goto out;
+
+	fail_clk = __clk_set_rate(clk, rate);
+	if (fail_clk) {
+		pr_warn("%s: failed to set %s rate\n", __func__,
+				fail_clk->name);
+		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
+		ret = -EIO;
+	}
+
+out:
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_set_rate);
+
+/**
+ * clk_get_parent - return the parent of a clk
+ * @clk: the clk whose parent gets returned
+ *
+ * Simply returns clk->parent.  Returns NULL if clk is NULL.
+ */
+struct clk *clk_get_parent(struct clk *clk)
+{
+	struct clk *parent;
+
+	mutex_lock(&prepare_lock);
+	parent = __clk_get_parent(clk);
+	mutex_unlock(&prepare_lock);
+
+	return parent;
+}
+EXPORT_SYMBOL_GPL(clk_get_parent);
+
+/*
+ * .get_parent is mandatory for clocks with multiple possible parents.  It is
+ * optional for single-parent clocks.  Always call .get_parent if it is
+ * available and WARN if it is missing for multi-parent clocks.
+ *
+ * For single-parent clocks without .get_parent, first check to see if the
+ * .parents array exists, and if so use it to avoid an expensive tree
+ * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
+ */
+static struct clk *__clk_init_parent(struct clk *clk)
+{
+	struct clk *ret = NULL;
+	u8 index;
+
+	/* handle the trivial cases */
+
+	if (!clk->num_parents)
+		goto out;
+
+	if (clk->num_parents == 1) {
+		if (IS_ERR_OR_NULL(clk->parent))
+			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
+		ret = clk->parent;
+		goto out;
+	}
+
+	if (!clk->ops->get_parent) {
+		WARN(!clk->ops->get_parent,
+			"%s: multi-parent clocks must implement .get_parent\n",
+			__func__);
+		goto out;
+	};
+
+	/*
+	 * Do our best to cache parent clocks in clk->parents.  This prevents
+	 * unnecessary and expensive calls to __clk_lookup.  We don't set
+	 * clk->parent here; that is done by the calling function
+	 */
+
+	index = clk->ops->get_parent(clk->hw);
+
+	if (!clk->parents)
+		clk->parents =
+			kmalloc((sizeof(struct clk*) * clk->num_parents),
+					GFP_KERNEL);
+
+	if (!clk->parents)
+		ret = __clk_lookup(clk->parent_names[index]);
+	else if (!clk->parents[index])
+		ret = clk->parents[index] =
+			__clk_lookup(clk->parent_names[index]);
+	else
+		ret = clk->parents[index];
+
+out:
+	return ret;
+}
+
+void __clk_reparent(struct clk *clk, struct clk *new_parent)
+{
+#ifdef CONFIG_COMMON_CLK_DEBUG
+	struct dentry *d;
+	struct dentry *new_parent_d;
+#endif
+
+	if (!clk || !new_parent)
+		return;
+
+	hlist_del(&clk->child_node);
+
+	if (new_parent)
+		hlist_add_head(&clk->child_node, &new_parent->children);
+	else
+		hlist_add_head(&clk->child_node, &clk_orphan_list);
+
+#ifdef CONFIG_COMMON_CLK_DEBUG
+	if (!inited)
+		goto out;
+
+	if (new_parent)
+		new_parent_d = new_parent->dentry;
+	else
+		new_parent_d = orphandir;
+
+	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
+			new_parent_d, clk->name);
+	if (d)
+		clk->dentry = d;
+	else
+		pr_debug("%s: failed to rename debugfs entry for %s\n",
+				__func__, clk->name);
+out:
+#endif
+
+	clk->parent = new_parent;
+
+	__clk_recalc_rates(clk, POST_RATE_CHANGE);
+}
+
+static int __clk_set_parent(struct clk *clk, struct clk *parent)
+{
+	struct clk *old_parent;
+	unsigned long flags;
+	int ret = -EINVAL;
+	u8 i;
+
+	old_parent = clk->parent;
+
+	/* find index of new parent clock using cached parent ptrs */
+	for (i = 0; i < clk->num_parents; i++)
+		if (clk->parents[i] == parent)
+			break;
+
+	/*
+	 * find index of new parent clock using string name comparison
+	 * also try to cache the parent to avoid future calls to __clk_lookup
+	 */
+	if (i == clk->num_parents)
+		for (i = 0; i < clk->num_parents; i++)
+			if (!strcmp(clk->parent_names[i], parent->name)) {
+				clk->parents[i] = __clk_lookup(parent->name);
+				break;
+			}
+
+	if (i == clk->num_parents) {
+		pr_debug("%s: clock %s is not a possible parent of clock %s\n",
+				__func__, parent->name, clk->name);
+		goto out;
+	}
+
+	/* migrate prepare and enable */
+	if (clk->prepare_count)
+		__clk_prepare(parent);
+
+	/* FIXME replace with clk_is_enabled(clk) someday */
+	spin_lock_irqsave(&enable_lock, flags);
+	if (clk->enable_count)
+		__clk_enable(parent);
+	spin_unlock_irqrestore(&enable_lock, flags);
+
+	/* change clock input source */
+	ret = clk->ops->set_parent(clk->hw, i);
+
+	/* clean up old prepare and enable */
+	spin_lock_irqsave(&enable_lock, flags);
+	if (clk->enable_count)
+		__clk_disable(old_parent);
+	spin_unlock_irqrestore(&enable_lock, flags);
+
+	if (clk->prepare_count)
+		__clk_unprepare(old_parent);
+
+out:
+	return ret;
+}
+
+/**
+ * clk_set_parent - switch the parent of a mux clk
+ * @clk: the mux clk whose input we are switching
+ * @parent: the new input to clk
+ *
+ * Re-parent clk to use parent as it's new input source.  If clk has the
+ * CLK_SET_PARENT_GATE flag set then clk must be gated for this
+ * operation to succeed.  After successfully changing clk's parent
+ * clk_set_parent will update the clk topology, sysfs topology and
+ * propagate rate recalculation via __clk_recalc_rates.  Returns 0 on
+ * success, -EERROR otherwise.
+ */
+int clk_set_parent(struct clk *clk, struct clk *parent)
+{
+	int ret = 0;
+
+	if (!clk || !clk->ops)
+		return -EINVAL;
+
+	if (!clk->ops->set_parent)
+		return -ENOSYS;
+
+	/* prevent racing with updates to the clock topology */
+	mutex_lock(&prepare_lock);
+
+	if (clk->parent == parent)
+		goto out;
+
+	/* propagate PRE_RATE_CHANGE notifications */
+	if (clk->notifier_count)
+		ret = __clk_speculate_rates(clk, parent->rate);
+
+	/* abort if a driver objects */
+	if (ret == NOTIFY_STOP)
+		goto out;
+
+	/* only re-parent if the clock is not in use */
+	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
+		ret = -EBUSY;
+	else
+		ret = __clk_set_parent(clk, parent);
+
+	/* propagate ABORT_RATE_CHANGE if .set_parent failed */
+	if (ret) {
+		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
+		goto out;
+	}
+
+	/* propagate rate recalculation downstream */
+	__clk_reparent(clk, parent);
+
+out:
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_set_parent);
+
+/**
+ * __clk_init - initialize the data structures in a struct clk
+ * @dev:	device initializing this clk, placeholder for now
+ * @clk:	clk being initialized
+ *
+ * Initializes the lists in struct clk, queries the hardware for the
+ * parent and rate and sets them both.
+ *
+ * Any struct clk passed into __clk_init must have the following members
+ * populated:
+ * 	.name
+ * 	.ops
+ * 	.hw
+ * 	.parent_names
+ * 	.num_parents
+ * 	.flags
+ *
+ * Essentially, everything that would normally be passed into clk_register is
+ * assumed to be initialized already in __clk_init.  The other members may be
+ * populated, but are optional.
+ *
+ * __clk_init is only exposed via clk-private.h and is intended for use with
+ * very large numbers of clocks that need to be statically initialized.  It is
+ * a layering violation to include clk-private.h from any code which implements
+ * a clock's .ops; as such any statically initialized clock data MUST be in a
+ * separate C file from the logic that implements it's operations.
+ */
+void __clk_init(struct device *dev, struct clk *clk)
+{
+	int i;
+	struct clk *orphan;
+	struct hlist_node *tmp;
+
+	if (!clk)
+		return;
+
+	mutex_lock(&prepare_lock);
+
+	/* check to see if a clock with this name is already registered */
+	if (__clk_lookup(clk->name))
+		goto out;
+
+	/*
+	 * Allocate an array of struct clk *'s to avoid unnecessary string
+	 * look-ups of clk's possible parents.  This can fail for clocks passed
+	 * in to clk_init during early boot; thus any access to clk->parents[]
+	 * must always check for a NULL pointer and try to populate it if
+	 * necessary.
+	 *
+	 * If clk->parents is not NULL we skip this entire block.  This allows
+	 * for clock drivers to statically initialize clk->parents.
+	 */
+	if (clk->num_parents && !clk->parents) {
+		clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
+				GFP_KERNEL);
+		/*
+		 * __clk_lookup returns NULL for parents that have not been
+		 * clk_init'd; thus any access to clk->parents[] must check
+		 * for a NULL pointer.  We can always perform lazy lookups for
+		 * missing parents later on.
+		 */
+		if (clk->parents)
+			for (i = 0; i < clk->num_parents; i++)
+				clk->parents[i] =
+					__clk_lookup(clk->parent_names[i]);
+	}
+
+	clk->parent = __clk_init_parent(clk);
+
+	/*
+	 * Populate clk->parent if parent has already been __clk_init'd.  If
+	 * parent has not yet been __clk_init'd then place clk in the orphan
+	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
+	 * clk list.
+	 *
+	 * Every time a new clk is clk_init'd then we walk the list of orphan
+	 * clocks and re-parent any that are children of the clock currently
+	 * being clk_init'd.
+	 */
+	if (clk->parent)
+		hlist_add_head(&clk->child_node,
+				&clk->parent->children);
+	else if (clk->flags & CLK_IS_ROOT)
+		hlist_add_head(&clk->child_node, &clk_root_list);
+	else
+		hlist_add_head(&clk->child_node, &clk_orphan_list);
+
+	/*
+	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
+	 * simple clocks and lazy developers the default fallback is to use the
+	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
+	 * then rate is set to zero.
+	 */
+	if (clk->ops->recalc_rate)
+		clk->rate = clk->ops->recalc_rate(clk->hw,
+				__clk_get_rate(clk->parent));
+	else if (clk->parent)
+		clk->rate = clk->parent->rate;
+	else
+		clk->rate = 0;
+
+	/*
+	 * walk the list of orphan clocks and reparent any that are children of
+	 * this clock
+	 */
+	hlist_for_each_entry(orphan, tmp, &clk_orphan_list, child_node)
+		__clk_reparent(orphan, __clk_init_parent(orphan));
+
+	/*
+	 * optional platform-specific magic
+	 *
+	 * The .init callback is not used by any of the basic clock types, but
+	 * exists for weird hardware that must perform initialization magic.
+	 * Please consider other ways of solving initialization problems before
+	 * using this callback, as it's use is discouraged.
+	 */
+	if (clk->ops->init)
+		clk->ops->init(clk->hw);
+
+	clk_debug_register(clk);
+
+out:
+	mutex_unlock(&prepare_lock);
+
+	return;
+}
+
+/**
+ * clk_register - allocate a new clock, register it and return an opaque cookie
+ * @dev: device that is registering this clock
+ * @name: clock name
+ * @ops: operations this clock supports
+ * @hw: link to hardware-specific clock data
+ * @parent_names: array of string names for all possible parents
+ * @num_parents: number of possible parents
+ * @flags: framework-level hints and quirks
+ *
+ * clk_register is the primary interface for populating the clock tree with new
+ * clock nodes.  It returns a pointer to the newly allocated struct clk which
+ * cannot be dereferenced by driver code but may be used in conjuction with the
+ * rest of the clock API.
+ */
+struct clk *clk_register(struct device *dev, const char *name,
+		const struct clk_ops *ops, struct clk_hw *hw,
+		char **parent_names, u8 num_parents, unsigned long flags)
+{
+	struct clk *clk;
+
+	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
+	if (!clk)
+		return NULL;
+
+	clk->name = name;
+	clk->ops = ops;
+	clk->hw = hw;
+	clk->flags = flags;
+	clk->parent_names = parent_names;
+	clk->num_parents = num_parents;
+	hw->clk = clk;
+
+	__clk_init(dev, clk);
+
+	return clk;
+}
+EXPORT_SYMBOL_GPL(clk_register);
+
+/***        clk rate change notifiers        ***/
+
+/**
+ * clk_notifier_register - add a clk rate change notifier
+ * @clk: struct clk * to watch
+ * @nb: struct notifier_block * with callback info
+ *
+ * Request notification when clk's rate changes.  This uses an SRCU
+ * notifier because we want it to block and notifier unregistrations are
+ * uncommon.  The callbacks associated with the notifier must not
+ * re-enter into the clk framework by calling any top-level clk APIs;
+ * this will cause a nested prepare_lock mutex.
+ *
+ * Pre-change notifier callbacks will be passed the current, pre-change
+ * rate of the clk via struct clk_notifier_data.old_rate.  The new,
+ * post-change rate of the clk is passed via struct
+ * clk_notifier.new_rate.
+ *
+ * Post-change notifiers will pass the now-current, post-change rate of
+ * the clk in both struct clk_notifier_data.old_rate and struct
+ * clk_notifier_data.new_rate.
+ *
+ * Abort-change notifiers are effectively the opposite of pre-change
+ * notifiers: the original pre-change clk rate is passed in via struct
+ * clk_notifier_data.new_rate and the failed post-change rate is passed
+ * in via struct clk_notifier_data.old_rate.
+ *
+ * clk_notifier_register() must be called from non-atomic context.
+ * Returns -EINVAL if called with null arguments, -ENOMEM upon
+ * allocation failure; otherwise, passes along the return value of
+ * srcu_notifier_chain_register().
+ */
+int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
+{
+	struct clk_notifier *cn;
+	int ret = -ENOMEM;
+
+	if (!clk || !nb)
+		return -EINVAL;
+
+	mutex_lock(&prepare_lock);
+
+	/* search the list of notifiers for this clk */
+	list_for_each_entry(cn, &clk_notifier_list, node)
+		if (cn->clk == clk)
+			break;
+
+	/* if clk wasn't in the notifier list, allocate new clk_notifier */
+	if (cn->clk != clk) {
+		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
+		if (!cn)
+			goto out;
+
+		cn->clk = clk;
+		srcu_init_notifier_head(&cn->notifier_head);
+
+		list_add(&cn->node, &clk_notifier_list);
+	}
+
+	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
+
+	clk->notifier_count++;
+
+out:
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_notifier_register);
+
+/**
+ * clk_notifier_unregister - remove a clk rate change notifier
+ * @clk: struct clk *
+ * @nb: struct notifier_block * with callback info
+ *
+ * Request no further notification for changes to 'clk' and frees memory
+ * allocated in clk_notifier_register.
+ *
+ * Returns -EINVAL if called with null arguments; otherwise, passes
+ * along the return value of srcu_notifier_chain_unregister().
+ */
+int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
+{
+	struct clk_notifier *cn = NULL;
+	int ret = -EINVAL;
+
+	if (!clk || !nb)
+		return -EINVAL;
+
+	mutex_lock(&prepare_lock);
+
+	list_for_each_entry(cn, &clk_notifier_list, node)
+		if (cn->clk == clk)
+			break;
+
+	if (cn->clk == clk) {
+		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
+
+		clk->notifier_count--;
+
+		/* XXX the notifier code should handle this better */
+		if (!cn->notifier_head.head) {
+			srcu_cleanup_notifier_head(&cn->notifier_head);
+			kfree(cn);
+		}
+
+	} else {
+		ret = -ENOENT;
+	}
+
+	mutex_unlock(&prepare_lock);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(clk_notifier_unregister);
diff --git a/include/linux/clk-private.h b/include/linux/clk-private.h
new file mode 100644
index 0000000..33bf6a7
--- /dev/null
+++ b/include/linux/clk-private.h
@@ -0,0 +1,68 @@ 
+/*
+ *  linux/include/linux/clk-private.h
+ *
+ *  Copyright (c) 2010-2011 Jeremy Kerr <jeremy.kerr@canonical.com>
+ *  Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __LINUX_CLK_PRIVATE_H
+#define __LINUX_CLK_PRIVATE_H
+
+#include <linux/clk-provider.h>
+#include <linux/list.h>
+
+/*
+ * WARNING: Do not include clk-private.h from any file that implements struct
+ * clk_ops.  Doing so is a layering violation!
+ *
+ * This header exists only to allow for statically initialized clock data.  Any
+ * static clock data must be defined in a separate file from the logic that
+ * implements the clock operations for that same data.
+ */
+
+#ifdef CONFIG_COMMON_CLK
+
+struct clk {
+	const char		*name;
+	const struct clk_ops	*ops;
+	struct clk_hw		*hw;
+	struct clk		*parent;
+	char			**parent_names;
+	struct clk		**parents;
+	u8			num_parents;
+	unsigned long		rate;
+	unsigned long		flags;
+	unsigned int		enable_count;
+	unsigned int		prepare_count;
+	struct hlist_head	children;
+	struct hlist_node	child_node;
+	unsigned int		notifier_count;
+#ifdef CONFIG_COMMON_CLK_DEBUG
+	struct dentry		*dentry;
+#endif
+};
+
+/**
+ * __clk_init - initialize the data structures in a struct clk
+ * @dev:	device initializing this clk, placeholder for now
+ * @clk:	clk being initialized
+ *
+ * Initializes the lists in struct clk, queries the hardware for the
+ * parent and rate and sets them both.
+ *
+ * Any struct clk passed into __clk_init must have the following members
+ * populated:
+ * 	.name
+ * 	.ops
+ * 	.hw
+ * 	.parent_names
+ * 	.num_parents
+ * 	.flags
+ */
+void __clk_init(struct device *dev, struct clk *clk);
+
+#endif /* CONFIG_COMMON_CLK */
+#endif /* CLK_PRIVATE_H */
diff --git a/include/linux/clk-provider.h b/include/linux/clk-provider.h
new file mode 100644
index 0000000..c9ed582
--- /dev/null
+++ b/include/linux/clk-provider.h
@@ -0,0 +1,169 @@ 
+/*
+ *  linux/include/linux/clk-provider.h
+ *
+ *  Copyright (c) 2010-2011 Jeremy Kerr <jeremy.kerr@canonical.com>
+ *  Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __LINUX_CLK_PROVIDER_H
+#define __LINUX_CLK_PROVIDER_H
+
+#include <linux/clk.h>
+
+#ifdef CONFIG_COMMON_CLK
+
+/**
+ * struct clk_hw - handle for traversing from a struct clk to its corresponding
+ * hardware-specific structure.  struct clk_hw should be declared within struct
+ * clk_foo and then referenced by the struct clk instance that uses struct
+ * clk_foo's clk_ops
+ *
+ * clk: pointer to the struct clk instance that points back to this struct
+ * clk_hw instance
+ */
+struct clk_hw {
+	struct clk *clk;
+};
+
+/*
+ * flags used across common struct clk.  these flags should only affect the
+ * top-level framework.  custom flags for dealing with hardware specifics
+ * belong in struct clk_foo
+ */
+#define CLK_SET_RATE_GATE	BIT(0) /* must be gated across rate change */
+#define CLK_SET_PARENT_GATE	BIT(1) /* must be gated across re-parent */
+#define CLK_SET_RATE_PARENT	BIT(2) /* propagate rate change up one level */
+#define CLK_IGNORE_UNUSED	BIT(3) /* do not gate even if unused */
+#define CLK_IS_ROOT		BIT(4) /* root clk, has no parent */
+
+/**
+ * struct clk_ops -  Callback operations for hardware clocks; these are to
+ * be provided by the clock implementation, and will be called by drivers
+ * through the clk_* api.
+ *
+ * @prepare:	Prepare the clock for enabling. This must not return until
+ * 		the clock is fully prepared, and it's safe to call clk_enable.
+ * 		This callback is intended to allow clock implementations to
+ * 		do any initialisation that may sleep. Called with
+ * 		prepare_lock held.
+ *
+ * @unprepare:	Release the clock from its prepared state. This will typically
+ * 		undo any work done in the @prepare callback. Called with
+ * 		prepare_lock held.
+ *
+ * @enable:	Enable the clock atomically. This must not return until the
+ * 		clock is generating a valid clock signal, usable by consumer
+ * 		devices. Called with enable_lock held. This function must not
+ * 		sleep.
+ *
+ * @disable:	Disable the clock atomically. Called with enable_lock held.
+ * 		This function must not sleep.
+ *
+ * @recalc_rate	Recalculate the rate of this clock, by quering hardware.  The
+ * 		parent rate is an input parameter.  It is up to the caller to
+ * 		insure that the prepare_mutex is held across this call.
+ * 		Returns the calculated rate.  Optional, but recommended - if
+ * 		this op is not set then clock rate will be initialized to 0.
+ *
+ * @round_rate:	Given a target rate as input, returns the closest rate actually
+ * 		supported by the clock.
+ *
+ * @get_parent:	Queries the hardware to determine the parent of a clock.  The
+ * 		return value is a u8 which specifies the index corresponding to
+ * 		the parent clock.  This index can be applied to either the
+ * 		.parent_names or .parents arrays.  In short, this function
+ * 		translates the parent value read from hardware into an array
+ * 		index.  Currently only called when the clock is initialized by
+ * 		__clk_init.  This callback is mandatory for clocks with
+ * 		multiple parents.  It is optional (and unnecessary) for clocks
+ * 		with 0 or 1 parents.
+ *
+ * @set_parent:	Change the input source of this clock; for clocks with multiple
+ * 		possible parents specify a new parent by passing in the index
+ * 		as a u8 corresponding to the parent in either the .parent_names
+ * 		or .parents arrays.  This function in affect translates an
+ * 		array index into the value programmed into the hardware.
+ * 		Returns 0 on success, -EERROR otherwise.
+ *
+ * @set_rate:	Change the rate of this clock. If this callback returns
+ * 		CLK_SET_RATE_PARENT, the rate change will be propagated to the
+ * 		parent clock (which may propagate again if the parent clock
+ * 		also sets this flag). The requested rate of the parent is
+ * 		passed back from the callback in the second 'unsigned long *'
+ * 		argument.  Note that it is up to the hardware clock's set_rate
+ * 		implementation to insure that clocks do not run out of spec
+ * 		when propgating the call to set_rate up to the parent.  One way
+ * 		to do this is to gate the clock (via clk_disable and/or
+ * 		clk_unprepare) before calling clk_set_rate, then ungating it
+ * 		afterward.  If your clock also has the CLK_GATE_SET_RATE flag
+ * 		set then this will insure safety.  Returns 0 on success,
+ * 		-EERROR otherwise.
+ *
+ * The clk_enable/clk_disable and clk_prepare/clk_unprepare pairs allow
+ * implementations to split any work between atomic (enable) and sleepable
+ * (prepare) contexts.  If enabling a clock requires code that might sleep,
+ * this must be done in clk_prepare.  Clock enable code that will never be
+ * called in a sleepable context may be implement in clk_enable.
+ *
+ * Typically, drivers will call clk_prepare when a clock may be needed later
+ * (eg. when a device is opened), and clk_enable when the clock is actually
+ * required (eg. from an interrupt). Note that clk_prepare MUST have been
+ * called before clk_enable.
+ */
+struct clk_ops {
+	int		(*prepare)(struct clk_hw *hw);
+	void		(*unprepare)(struct clk_hw *hw);
+	int		(*enable)(struct clk_hw *hw);
+	void		(*disable)(struct clk_hw *hw);
+	unsigned long	(*recalc_rate)(struct clk_hw *hw,
+					unsigned long parent_rate);
+	long		(*round_rate)(struct clk_hw *hw, unsigned long,
+					unsigned long *);
+	int		(*set_parent)(struct clk_hw *hw, u8 index);
+	u8		(*get_parent)(struct clk_hw *hw);
+	int		(*set_rate)(struct clk_hw *hw, unsigned long);
+	void		(*init)(struct clk_hw *hw);
+};
+
+
+/**
+ * clk_register - allocate a new clock, register it and return an opaque cookie
+ * @dev: device that is registering this clock
+ * @name: clock name
+ * @ops: operations this clock supports
+ * @hw: link to hardware-specific clock data
+ * @parent_names: array of string names for all possible parents
+ * @num_parents: number of possible parents
+ * @flags: framework-level hints and quirks
+ *
+ * clk_register is the primary interface for populating the clock tree with new
+ * clock nodes.  It returns a pointer to the newly allocated struct clk which
+ * cannot be dereferenced by driver code but may be used in conjuction with the
+ * rest of the clock API.
+ */
+struct clk *clk_register(struct device *dev, const char *name,
+		const struct clk_ops *ops, struct clk_hw *hw,
+		char **parent_names, u8 num_parents, unsigned long flags);
+
+/* helper functions */
+const char *__clk_get_name(struct clk *clk);
+struct clk_hw *__clk_get_hw(struct clk *clk);
+u8 __clk_get_num_parents(struct clk *clk);
+struct clk *__clk_get_parent(struct clk *clk);
+unsigned long __clk_get_rate(struct clk *clk);
+unsigned long __clk_get_flags(struct clk *clk);
+struct clk *__clk_lookup(const char *name);
+
+/*
+ * FIXME clock api without lock protection
+ */
+int __clk_prepare(struct clk *clk);
+void __clk_unprepare(struct clk *clk);
+void __clk_reparent(struct clk *clk, struct clk *new_parent);
+unsigned long __clk_round_rate(struct clk *clk, unsigned long rate);
+
+#endif /* CONFIG_COMMON_CLK */
+#endif /* CLK_PROVIDER_H */
diff --git a/include/linux/clk.h b/include/linux/clk.h
index b9d46fa..b025272 100644
--- a/include/linux/clk.h
+++ b/include/linux/clk.h
@@ -3,6 +3,7 @@ 
  *
  *  Copyright (C) 2004 ARM Limited.
  *  Written by Deep Blue Solutions Limited.
+ *  Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -12,18 +13,75 @@ 
 #define __LINUX_CLK_H
 
 #include <linux/kernel.h>
+#include <linux/notifier.h>
 
 struct device;
 
-/*
- * The base API.
+struct clk;
+
+#ifdef CONFIG_COMMON_CLK
+
+/**
+ * DOC: clk notifier callback types
+ *
+ * PRE_RATE_CHANGE - called immediately before the clk rate is changed,
+ *     to indicate that the rate change will proceed.  Drivers must
+ *     immediately terminate any operations that will be affected by the
+ *     rate change.  Callbacks may either return NOTIFY_DONE or
+ *     NOTIFY_STOP.
+ *
+ * ABORT_RATE_CHANGE: called if the rate change failed for some reason
+ *     after PRE_RATE_CHANGE.  In this case, all registered notifiers on
+ *     the clk will be called with ABORT_RATE_CHANGE. Callbacks must
+ *     always return NOTIFY_DONE.
+ *
+ * POST_RATE_CHANGE - called after the clk rate change has successfully
+ *     completed.  Callbacks must always return NOTIFY_DONE.
+ *
  */
+#define PRE_RATE_CHANGE			BIT(0)
+#define POST_RATE_CHANGE		BIT(1)
+#define ABORT_RATE_CHANGE		BIT(2)
 
+/**
+ * struct clk_notifier - associate a clk with a notifier
+ * @clk: struct clk * to associate the notifier with
+ * @notifier_head: a blocking_notifier_head for this clk
+ * @node: linked list pointers
+ *
+ * A list of struct clk_notifier is maintained by the notifier code.
+ * An entry is created whenever code registers the first notifier on a
+ * particular @clk.  Future notifiers on that @clk are added to the
+ * @notifier_head.
+ */
+struct clk_notifier {
+	struct clk			*clk;
+	struct srcu_notifier_head	notifier_head;
+	struct list_head		node;
+};
 
-/*
- * struct clk - an machine class defined object / cookie.
+/**
+ * struct clk_notifier_data - rate data to pass to the notifier callback
+ * @clk: struct clk * being changed
+ * @old_rate: previous rate of this clk
+ * @new_rate: new rate of this clk
+ *
+ * For a pre-notifier, old_rate is the clk's rate before this rate
+ * change, and new_rate is what the rate will be in the future.  For a
+ * post-notifier, old_rate and new_rate are both set to the clk's
+ * current rate (this was done to optimize the implementation).
  */
-struct clk;
+struct clk_notifier_data {
+	struct clk		*clk;
+	unsigned long		old_rate;
+	unsigned long		new_rate;
+};
+
+int clk_notifier_register(struct clk *clk, struct notifier_block *nb);
+
+int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb);
+
+#endif /* !CONFIG_COMMON_CLK */
 
 /**
  * clk_get - lookup and obtain a reference to a clock producer.