diff mbox series

[12/15] clk: nuvoton: Add clock driver for ma35d1 clock controller

Message ID 20230315072902.9298-13-ychuang570808@gmail.com
State New
Headers show
Series Introduce Nuvoton ma35d1 SoC | expand

Commit Message

Jacky Huang March 15, 2023, 7:28 a.m. UTC
From: Jacky Huang <ychuang3@nuvoton.com>

The clock controller generates clocks for the whole chip, including
system clocks and all peripheral clocks. This driver support ma35d1
clock gating, divider, and individual PLL configuration.

There are 6 PLLs in ma35d1 SoC:
  - CA-PLL for the two Cortex-A35 CPU clock
  - SYS-PLL for system bus, which comes from the companion MCU
    and cannot be programmed by clock controller.
  - DDR-PLL for DDR
  - EPLL for GMAC and GFX, Display, and VDEC IPs.
  - VPLL for video output pixel clock
  - APLL for SDHC, I2S audio, and other IPs.
CA-PLL has only one operation mode.
DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
operation modes: integer mode, fraction mode, and spread specturm mode.

Signed-off-by: Jacky Huang <ychuang3@nuvoton.com>
---
 drivers/clk/Makefile                     |   1 +
 drivers/clk/nuvoton/Makefile             |   4 +
 drivers/clk/nuvoton/clk-ma35d1-divider.c | 144 ++++
 drivers/clk/nuvoton/clk-ma35d1-pll.c     | 534 +++++++++++++
 drivers/clk/nuvoton/clk-ma35d1.c         | 970 +++++++++++++++++++++++
 drivers/clk/nuvoton/clk-ma35d1.h         | 198 +++++
 6 files changed, 1851 insertions(+)
 create mode 100644 drivers/clk/nuvoton/Makefile
 create mode 100644 drivers/clk/nuvoton/clk-ma35d1-divider.c
 create mode 100644 drivers/clk/nuvoton/clk-ma35d1-pll.c
 create mode 100644 drivers/clk/nuvoton/clk-ma35d1.c
 create mode 100644 drivers/clk/nuvoton/clk-ma35d1.h

Comments

Jacky Huang March 19, 2023, 2:55 a.m. UTC | #1
Dear Krzysztof,


On 2023/3/16 下午 03:51, Krzysztof Kozlowski wrote:
> On 15/03/2023 08:28, Jacky Huang wrote:
>> From: Jacky Huang<ychuang3@nuvoton.com>
>>
>> The clock controller generates clocks for the whole chip, including
>> system clocks and all peripheral clocks. This driver support ma35d1
>> clock gating, divider, and individual PLL configuration.
>>
>> There are 6 PLLs in ma35d1 SoC:
>>    - CA-PLL for the two Cortex-A35 CPU clock
>>    - SYS-PLL for system bus, which comes from the companion MCU
>>      and cannot be programmed by clock controller.
>>    - DDR-PLL for DDR
>>    - EPLL for GMAC and GFX, Display, and VDEC IPs.
>>    - VPLL for video output pixel clock
>>    - APLL for SDHC, I2S audio, and other IPs.
>> CA-PLL has only one operation mode.
>> DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
>> operation modes: integer mode, fraction mode, and spread specturm mode.
>>
>> Signed-off-by: Jacky Huang<ychuang3@nuvoton.com>
>> ---
>>   drivers/clk/Makefile                     |   1 +
>>   drivers/clk/nuvoton/Makefile             |   4 +
>>   drivers/clk/nuvoton/clk-ma35d1-divider.c | 144 ++++
>>   drivers/clk/nuvoton/clk-ma35d1-pll.c     | 534 +++++++++++++
>>   drivers/clk/nuvoton/clk-ma35d1.c         | 970 +++++++++++++++++++++++
>>   drivers/clk/nuvoton/clk-ma35d1.h         | 198 +++++
>>   6 files changed, 1851 insertions(+)
>>   create mode 100644 drivers/clk/nuvoton/Makefile
>>   create mode 100644 drivers/clk/nuvoton/clk-ma35d1-divider.c
>>   create mode 100644 drivers/clk/nuvoton/clk-ma35d1-pll.c
>>   create mode 100644 drivers/clk/nuvoton/clk-ma35d1.c
>>   create mode 100644 drivers/clk/nuvoton/clk-ma35d1.h
>>
>> diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile
>> index e3ca0d058a25..2e7916d269e1 100644
>> --- a/drivers/clk/Makefile
>> +++ b/drivers/clk/Makefile
>> @@ -103,6 +103,7 @@ endif
>>   obj-y					+= mstar/
>>   obj-y					+= mvebu/
>>   obj-$(CONFIG_ARCH_MXS)			+= mxs/
>> +obj-$(CONFIG_ARCH_NUVOTON)		+= nuvoton/
> Missing compile test.
>
> (...)


Thank you. We should have a Kconfig file in nuvoton directory.

I will a Kconfig file including COMPILE_TEST.


>> +
>> +MODULE_AUTHOR("Chi-Fang Li<cfli0@nuvoton.com>");
>> +MODULE_DESCRIPTION("NUVOTON MA35D1 Clock Driver");
>> +MODULE_LICENSE("GPL v2");
>> diff --git a/drivers/clk/nuvoton/clk-ma35d1.h b/drivers/clk/nuvoton/clk-ma35d1.h
>> new file mode 100644
>> index 000000000000..faae5a17e425
>> --- /dev/null
>> +++ b/drivers/clk/nuvoton/clk-ma35d1.h
>> @@ -0,0 +1,198 @@
>> +/* SPDX-License-Identifier: GPL-2.0-only */
>> +/*
>> + * Copyright (C) 2023 Nuvoton Technology Corp.
>> + * Author: Chi-Fang Li<cfli0@nuvoton.com>
>> + */
>> +
>> +#ifndef __DRV_CLK_NUVOTON_MA35D1_H
>> +#define __DRV_CLK_NUVOTON_MA35D1_H
>> +
>> +#include <linux/clk.h>
>> +#include <linux/clkdev.h>
>> +#include <linux/clk-provider.h>
>> +#include <linux/spinlock.h>
>> +#include <linux/regmap.h>
>> +#include <linux/mfd/syscon.h>
>> +#include <linux/mfd/ma35d1-sys.h>
>> +
>> +enum ma35d1_pll_type {
>> +	MA35D1_CAPLL,
>> +	MA35D1_DDRPLL,
>> +	MA35D1_APLL,
>> +	MA35D1_EPLL,
>> +	MA35D1_VPLL,
>> +};
>> +
>> +enum ma35d1_pll_mode {
>> +	VSIPLL_INTEGER_MODE,
>> +	VSIPLL_FRACTIONAL_MODE,
>> +	VSIPLL_SS_MODE,
>> +};
>> +
>> +/* VSI-PLL CTL0~2 */
>> +#define VSIPLL_CTL0			0x0
>> +#define VSIPLL_CTL1			0x4
>> +#define VSIPLL_CTL2			0x8
>> +
>> +/* VSI-PLL Specification limits */
>> +#define VSIPLL_FREF_MAX_FREQ		200000000UL
>> +#define VSIPLL_FREF_MIN_FREQ		1000000UL
>> +#define VSIPLL_FREFDIVM_MAX_FREQ	40000000UL
>> +#define VSIPLL_FREFDIVM_MIN_FREQ0	1000000UL
>> +#define VSIPLL_FREFDIVM_MIN_FREQ1	10000000UL
>> +#define VSIPLL_FCLK_MAX_FREQ		2400000000UL
>> +#define VSIPLL_FCLK_MIN_FREQ		600000000UL
>> +#define VSIPLL_FCLKO_MAX_FREQ		2400000000UL
>> +#define VSIPLL_FCLKO_MIN_FREQ		85700000UL
>> +#define VSIPLL_SPREAD_RANGE		194
>> +#define VSIPLL_MODULATION_FREQ		50000
>> +
>> +/* Clock Control Registers Offset */
>> +#define REG_CLK_PWRCTL			(0x00)
>> +#define REG_CLK_SYSCLK0			(0x04)
>> +#define REG_CLK_SYSCLK1			(0x08)
>> +#define REG_CLK_APBCLK0			(0x0C)
>> +#define REG_CLK_APBCLK1			(0x10)
>> +#define REG_CLK_APBCLK2			(0x14)
>> +#define REG_CLK_CLKSEL0			(0x18)
>> +#define REG_CLK_CLKSEL1			(0x1C)
>> +#define REG_CLK_CLKSEL2			(0x20)
>> +#define REG_CLK_CLKSEL3			(0x24)
>> +#define REG_CLK_CLKSEL4			(0x28)
>> +#define REG_CLK_CLKDIV0			(0x2C)
>> +#define REG_CLK_CLKDIV1			(0x30)
>> +#define REG_CLK_CLKDIV2			(0x34)
>> +#define REG_CLK_CLKDIV3			(0x38)
>> +#define REG_CLK_CLKDIV4			(0x3C)
>> +#define REG_CLK_CLKOCTL			(0x40)
>> +#define REG_CLK_STATUS			(0x50)
>> +#define REG_CLK_PLL0CTL0		(0x60)
>> +#define REG_CLK_PLL2CTL0		(0x80)
>> +#define REG_CLK_PLL2CTL1		(0x84)
>> +#define REG_CLK_PLL2CTL2		(0x88)
>> +#define REG_CLK_PLL3CTL0		(0x90)
>> +#define REG_CLK_PLL3CTL1		(0x94)
>> +#define REG_CLK_PLL3CTL2		(0x98)
>> +#define REG_CLK_PLL4CTL0		(0xA0)
>> +#define REG_CLK_PLL4CTL1		(0xA4)
>> +#define REG_CLK_PLL4CTL2		(0xA8)
>> +#define REG_CLK_PLL5CTL0		(0xB0)
>> +#define REG_CLK_PLL5CTL1		(0xB4)
>> +#define REG_CLK_PLL5CTL2		(0xB8)
>> +#define REG_CLK_CLKDCTL			(0xC0)
>> +#define REG_CLK_CLKDSTS			(0xC4)
>> +#define REG_CLK_CDUPB			(0xC8)
>> +#define REG_CLK_CDLOWB			(0xCC)
>> +#define REG_CLK_CKFLTRCTL		(0xD0)
>> +#define REG_CLK_TESTCLK			(0xF0)
>> +#define REG_CLK_PLLCTL			(0x40)
>> +
>> +/* Constant Definitions for Clock Controller */
>> +#define SMICPLLCTL0_FBDIV_POS		(0)
>> +#define SMICPLLCTL0_FBDIV_MSK		(0xfful << SMICPLLCTL0_FBDIV_POS)
>> +#define SMICPLLCTL0_INDIV_POS		(8)
>> +#define SMICPLLCTL0_INDIV_MSK		(0xful << SMICPLLCTL0_INDIV_POS)
>> +#define SMICPLLCTL0_OUTDIV_POS		(12)
>> +#define SMICPLLCTL0_OUTDIV_MSK		(0x3ul << SMICPLLCTL0_OUTDIV_POS)
>> +#define SMICPLLCTL0_PD_POS		(16)
>> +#define SMICPLLCTL0_PD_MSK		(0x1ul << SMICPLLCTL0_PD_POS)
>> +#define SMICPLLCTL0_BP_POS		(17)
>> +#define SMICPLLCTL0_BP_MSK		(0x1ul << SMICPLLCTL0_BP_POS)
>> +#define VSIPLLCTL0_FBDIV_POS		(0)
>> +#define VSIPLLCTL0_FBDIV_MSK		(0x7fful << VSIPLLCTL0_FBDIV_POS)
>> +#define VSIPLLCTL0_INDIV_POS		(12)
>> +#define VSIPLLCTL0_INDIV_MSK		(0x3ful << VSIPLLCTL0_INDIV_POS)
>> +#define VSIPLLCTL0_MODE_POS		(18)
>> +#define VSIPLLCTL0_MODE_MSK		(0x3ul << VSIPLLCTL0_MODE_POS)
>> +#define VSIPLLCTL0_SSRATE_POS		(20)
>> +#define VSIPLLCTL0_SSRATE_MSK		(0x7fful << VSIPLLCTL0_SSRATE_POS)
>> +#define VSIPLLCTL1_PD_POS		(0)
>> +#define VSIPLLCTL1_PD_MSK		(0x1ul << VSIPLLCTL1_PD_POS)
>> +#define VSIPLLCTL1_BP_POS		(1)
>> +#define VSIPLLCTL1_BP_MSK		(0x1ul << VSIPLLCTL1_BP_POS)
>> +#define VSIPLLCTL1_OUTDIV_POS		(4)
>> +#define VSIPLLCTL1_OUTDIV_MSK		(0x7ul << VSIPLLCTL1_OUTDIV_POS)
>> +#define VSIPLLCTL1_FRAC_POS		(8)
>> +#define VSIPLLCTL1_FRAC_MSK		(0xfffffful << VSIPLLCTL1_FRAC_POS)
>> +#define VSIPLLCTL2_SLOPE_POS		(0)
>> +#define VSIPLLCTL2_SLOPE_MSK		(0xfffffful << VSIPLLCTL2_SLOPE_POS)
>> +
>> +struct clk_hw *ma35d1_reg_clk_pll(enum ma35d1_pll_type type, u8 u8mode,
>> +				 const char *name, const char *parent,
>> +				 unsigned long targetFreq,
>> +				 void __iomem *base,
>> +				 struct regmap *regmap);
>> +
>> +struct clk_hw *ma35d1_reg_adc_clkdiv(struct device *dev,
>> +				    const char *name,
>> +				    const char *parent_name,
>> +				    unsigned long flags,
>> +				    void __iomem *reg, u8 shift,
>> +				    u8 width, u32 mask_bit);
>> +
>> +extern spinlock_t ma35d1_lock;
> Why this is here?


We will remove it and use "static DEFINE_SPINLOCK(ma35d1_lock);"

and have it used in clk-ma35d1-divider.c only.


>> +
>> +static inline struct clk_hw *ma35d1_clk_fixed(const char *name, int rate)
>> +{
>> +	return clk_hw_register_fixed_rate(NULL, name, NULL, 0, rate);
>> +}
>> +
> Why all these are here?


These should be static functions in clk-ma35d1.c.

We will move these function to the C file in next version.


>> +
>> +#endif /* __DRV_CLK_NUVOTON_MA35D1_H */
> Best regards,
> Krzysztof


Best regards,

Jacky Huang
Ilpo Järvinen March 20, 2023, 10:31 a.m. UTC | #2
On Sun, 19 Mar 2023, Jacky Huang wrote:

> 
> On 2023/3/16 下午 11:56, Ilpo Järvinen wrote:
> > On Wed, 15 Mar 2023, Jacky Huang wrote:
> > 
> > > From: Jacky Huang <ychuang3@nuvoton.com>
> > > 
> > > The clock controller generates clocks for the whole chip, including
> > > system clocks and all peripheral clocks. This driver support ma35d1
> > > clock gating, divider, and individual PLL configuration.
> > > 
> > > There are 6 PLLs in ma35d1 SoC:
> > >    - CA-PLL for the two Cortex-A35 CPU clock
> > >    - SYS-PLL for system bus, which comes from the companion MCU
> > >      and cannot be programmed by clock controller.
> > >    - DDR-PLL for DDR
> > >    - EPLL for GMAC and GFX, Display, and VDEC IPs.
> > >    - VPLL for video output pixel clock
> > >    - APLL for SDHC, I2S audio, and other IPs.
> > > CA-PLL has only one operation mode.
> > > DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
> > > operation modes: integer mode, fraction mode, and spread specturm mode.
> > > 
> > > Signed-off-by: Jacky Huang <ychuang3@nuvoton.com>
> > > ---

> > > +};
> > > +
> > > +#define to_ma35d1_adc_clk_divider(_hw)	\
> > > +	container_of(_hw, struct ma35d1_adc_clk_divider, hw)
> > static inline
> 
> 
> I will modify these "static" functions as "static inline".

No, that's not what I meant. Make the container_of define static inline
function instead, no other functions. (Or if you have more than one of 
such, all of them of course).

> > > +}
> > > diff --git a/drivers/clk/nuvoton/clk-ma35d1-pll.c
> > > b/drivers/clk/nuvoton/clk-ma35d1-pll.c
> > > new file mode 100644
> > > index 000000000000..79e724b148fa
> > > --- /dev/null
> > > +++ b/drivers/clk/nuvoton/clk-ma35d1-pll.c
> > > @@ -0,0 +1,534 @@
> > > +// SPDX-License-Identifier: GPL-2.0-only
> > > +/*
> > > + * Copyright (C) 2023 Nuvoton Technology Corp.
> > > + * Author: Chi-Fang Li <cfli0@nuvoton.com>
> > > + */
> > > +
> > > +#include <linux/clk.h>
> > > +#include <linux/clk-provider.h>
> > > +#include <linux/io.h>
> > > +#include <linux/slab.h>
> > > +#include <linux/bitfield.h>
> > > +
> > > +#include "clk-ma35d1.h"
> > > +
> > > +#define to_ma35d1_clk_pll(clk) \
> > > +	(container_of(clk, struct ma35d1_clk_pll, clk))
> > static inline
> 
> 
> I am sorry cannot get "static inline" refer to which one.
> 
> Would you give more advice here?
> 
> Thank you.

static inline struct ...type_here... *to_ma35d1_clk_pll(struct ...type_here... *clk)
{
	return container_of(clk, struct ma35d1_clk_pll, clk);
}


> > > +	} else {
> > > +		pr_err("Failed to set rate %ld\n", u64PllFreq);
> > > +		return 0;
> > > +	}
> > > +
> > > +	u64P = (u64FCLKO >= VSIPLL_FCLK_MIN_FREQ) ? 1 :
> > > +	       ((VSIPLL_FCLK_MIN_FREQ / u64FCLKO) +
> > > +		((VSIPLL_FCLK_MIN_FREQ % u64FCLKO) ? 1 : 0));
> > Ditto.
> > 
> > Is here some ...ROUND_UP() trick hidden too?
> 
> 
> This follows the description of PLL spec.

Right but I was looking into what the math does. To me this looks like 
rounding up:
 VSIPLL_FCLK_MIN_FREQ / u64FCLKO + (VSIPLL_FCLK_MIN_FREQ % u64FCLKO ? 1 : 0)

When modulo is > 0, add one, which is round up, no?

There are helpers which you should use for rounding up, search for 
*_ROUND_UP. I think math64.h had one 64-bit one.

> > > +	u64X = u64tmp % 1000;
> > > +	u32FRAC = ((u64X << 24) + 500) / 1000;

I missed this earlier, is this rounding? ...Use a helper if it is. 
Otherwise define what 500 is. (No need to answer despite question mark, 
just do the change).

> > > +
> > > +	u64SSRATE = ((PllSrcClk >> 1) / (u32Fmod * 2)) - 1;
> > > +	u64SLOPE = ((u64tmp * u32SR / u64SSRATE) << 24) / 100 / 1000;
> > > +
> > > +	u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;
> > Is some *SEC_PER_*SEC define relevant for 1000 ?
> > 
> > Or some other units, e.g., HZ related?
> 
> 
> 1000 is for kHz to MHz, and 100 is for percentage.

Okay, then use KHZ_PER_MHZ from linux/units.h.

We don't have anything for percents under include/ I think so that can be 
left as literal.

> > > +	switch (pll->mode) {
> > > +	case VSIPLL_INTEGER_MODE:
> > > +		u64PllClk = CLK_CalPLLFreq_Mode0(PllSrcClk, u64PllFreq,
> > > +						 u32Reg);
> > One line.
> 
> 
> It will exceed 80 characters in one line.

Yeah, the semicolon won't fit to 80 chars :-) which means there won't be 
significant information loss even on 80 chars terminal. This kind of cases 
is why checkpatch won't complain until 100 chars. Use common sense (don't 
hide most of the logic to 80-100 but don't be afraid of breaking the 80 
chars where the information loss is not significant issue).

Besides, once you removed the types from variable names, it will be 
shorter anyway.
Jacky Huang March 21, 2023, 3:03 p.m. UTC | #3
Dear Ilpo,


On 2023/3/20 下午 06:31, Ilpo Järvinen wrote:
> On Sun, 19 Mar 2023, Jacky Huang wrote:
>
>> On 2023/3/16 下午 11:56, Ilpo Järvinen wrote:
>>> On Wed, 15 Mar 2023, Jacky Huang wrote:
>>>
>>>> From: Jacky Huang <ychuang3@nuvoton.com>
>>>>
>>>> The clock controller generates clocks for the whole chip, including
>>>> system clocks and all peripheral clocks. This driver support ma35d1
>>>> clock gating, divider, and individual PLL configuration.
>>>>
>>>> There are 6 PLLs in ma35d1 SoC:
>>>>     - CA-PLL for the two Cortex-A35 CPU clock
>>>>     - SYS-PLL for system bus, which comes from the companion MCU
>>>>       and cannot be programmed by clock controller.
>>>>     - DDR-PLL for DDR
>>>>     - EPLL for GMAC and GFX, Display, and VDEC IPs.
>>>>     - VPLL for video output pixel clock
>>>>     - APLL for SDHC, I2S audio, and other IPs.
>>>> CA-PLL has only one operation mode.
>>>> DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
>>>> operation modes: integer mode, fraction mode, and spread specturm mode.
>>>>
>>>> Signed-off-by: Jacky Huang <ychuang3@nuvoton.com>
>>>> ---
>>>> +};
>>>> +
>>>> +#define to_ma35d1_adc_clk_divider(_hw)	\
>>>> +	container_of(_hw, struct ma35d1_adc_clk_divider, hw)
>>> static inline
>>
>> I will modify these "static" functions as "static inline".
> No, that's not what I meant. Make the container_of define static inline
> function instead, no other functions. (Or if you have more than one of
> such, all of them of course).
>
>>>> +}
>>>> diff --git a/drivers/clk/nuvoton/clk-ma35d1-pll.c
>>>> b/drivers/clk/nuvoton/clk-ma35d1-pll.c
>>>> new file mode 100644
>>>> index 000000000000..79e724b148fa
>>>> --- /dev/null
>>>> +++ b/drivers/clk/nuvoton/clk-ma35d1-pll.c
>>>> @@ -0,0 +1,534 @@
>>>> +// SPDX-License-Identifier: GPL-2.0-only
>>>> +/*
>>>> + * Copyright (C) 2023 Nuvoton Technology Corp.
>>>> + * Author: Chi-Fang Li <cfli0@nuvoton.com>
>>>> + */
>>>> +
>>>> +#include <linux/clk.h>
>>>> +#include <linux/clk-provider.h>
>>>> +#include <linux/io.h>
>>>> +#include <linux/slab.h>
>>>> +#include <linux/bitfield.h>
>>>> +
>>>> +#include "clk-ma35d1.h"
>>>> +
>>>> +#define to_ma35d1_clk_pll(clk) \
>>>> +	(container_of(clk, struct ma35d1_clk_pll, clk))
>>> static inline
>>
>> I am sorry cannot get "static inline" refer to which one.
>>
>> Would you give more advice here?
>>
>> Thank you.
> static inline struct ...type_here... *to_ma35d1_clk_pll(struct ...type_here... *clk)
> {
> 	return container_of(clk, struct ma35d1_clk_pll, clk);
> }
>

OK, I got it. Thank you very much.


>>>> +	} else {
>>>> +		pr_err("Failed to set rate %ld\n", u64PllFreq);
>>>> +		return 0;
>>>> +	}
>>>> +
>>>> +	u64P = (u64FCLKO >= VSIPLL_FCLK_MIN_FREQ) ? 1 :
>>>> +	       ((VSIPLL_FCLK_MIN_FREQ / u64FCLKO) +
>>>> +		((VSIPLL_FCLK_MIN_FREQ % u64FCLKO) ? 1 : 0));
>>> Ditto.
>>>
>>> Is here some ...ROUND_UP() trick hidden too?
>>
>> This follows the description of PLL spec.
> Right but I was looking into what the math does. To me this looks like
> rounding up:
>   VSIPLL_FCLK_MIN_FREQ / u64FCLKO + (VSIPLL_FCLK_MIN_FREQ % u64FCLKO ? 1 : 0)
>
> When modulo is > 0, add one, which is round up, no?
>
> There are helpers which you should use for rounding up, search for
> *_ROUND_UP. I think math64.h had one 64-bit one.


Yes, it is a round up. We will find out all the occurrence and use 
ROUND_UP() macro instead.


>>>> +	u64X = u64tmp % 1000;
>>>> +	u32FRAC = ((u64X << 24) + 500) / 1000;
> I missed this earlier, is this rounding? ...Use a helper if it is.
> Otherwise define what 500 is. (No need to answer despite question mark,
> just do the change).
>
>>>> +
>>>> +	u64SSRATE = ((PllSrcClk >> 1) / (u32Fmod * 2)) - 1;
>>>> +	u64SLOPE = ((u64tmp * u32SR / u64SSRATE) << 24) / 100 / 1000;
>>>> +
>>>> +	u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;
>>> Is some *SEC_PER_*SEC define relevant for 1000 ?
>>>
>>> Or some other units, e.g., HZ related?
>>
>> 1000 is for kHz to MHz, and 100 is for percentage.
> Okay, then use KHZ_PER_MHZ from linux/units.h.
>
> We don't have anything for percents under include/ I think so that can be
> left as literal.


Sure, we are rewriting the pll calculation routine and add formula 
comments to make it more readable.


>>>> +	switch (pll->mode) {
>>>> +	case VSIPLL_INTEGER_MODE:
>>>> +		u64PllClk = CLK_CalPLLFreq_Mode0(PllSrcClk, u64PllFreq,
>>>> +						 u32Reg);
>>> One line.
>>
>> It will exceed 80 characters in one line.
> Yeah, the semicolon won't fit to 80 chars :-) which means there won't be
> significant information loss even on 80 chars terminal. This kind of cases
> is why checkpatch won't complain until 100 chars. Use common sense (don't
> hide most of the logic to 80-100 but don't be afraid of breaking the 80
> chars where the information loss is not significant issue).
>
> Besides, once you removed the types from variable names, it will be
> shorter anyway.
>
Got it. Thanks for your kind help and detailed explanation.


Best regards,

Jacky Huang
diff mbox series

Patch

diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile
index e3ca0d058a25..2e7916d269e1 100644
--- a/drivers/clk/Makefile
+++ b/drivers/clk/Makefile
@@ -103,6 +103,7 @@  endif
 obj-y					+= mstar/
 obj-y					+= mvebu/
 obj-$(CONFIG_ARCH_MXS)			+= mxs/
+obj-$(CONFIG_ARCH_NUVOTON)		+= nuvoton/
 obj-$(CONFIG_COMMON_CLK_NXP)		+= nxp/
 obj-$(CONFIG_COMMON_CLK_PISTACHIO)	+= pistachio/
 obj-$(CONFIG_COMMON_CLK_PXA)		+= pxa/
diff --git a/drivers/clk/nuvoton/Makefile b/drivers/clk/nuvoton/Makefile
new file mode 100644
index 000000000000..d2c092541b8d
--- /dev/null
+++ b/drivers/clk/nuvoton/Makefile
@@ -0,0 +1,4 @@ 
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1.o
+obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-divider.o
+obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-pll.o
diff --git a/drivers/clk/nuvoton/clk-ma35d1-divider.c b/drivers/clk/nuvoton/clk-ma35d1-divider.c
new file mode 100644
index 000000000000..5f4791531e47
--- /dev/null
+++ b/drivers/clk/nuvoton/clk-ma35d1-divider.c
@@ -0,0 +1,144 @@ 
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2023 Nuvoton Technology Corp.
+ * Author: Chi-Fang Li <cfli0@nuvoton.com>
+ */
+
+#include <linux/clk-provider.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+#include <linux/err.h>
+#include <linux/spinlock.h>
+
+#include "clk-ma35d1.h"
+
+#define div_mask(width)		((1 << (width)) - 1)
+
+struct ma35d1_adc_clk_divider {
+	struct clk_hw hw;
+	void __iomem *reg;
+	u8 shift;
+	u8 width;
+	u32 mask;
+	const struct clk_div_table *table;
+	spinlock_t *lock;
+};
+
+#define to_ma35d1_adc_clk_divider(_hw)	\
+	container_of(_hw, struct ma35d1_adc_clk_divider, hw)
+
+static unsigned long ma35d1_clkdiv_recalc_rate(struct clk_hw *hw,
+					       unsigned long parent_rate)
+{
+	unsigned int val;
+	struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
+
+	val = readl_relaxed(dclk->reg) >> dclk->shift;
+	val &= div_mask(dclk->width);
+	val += 1;
+	return divider_recalc_rate(hw, parent_rate, val, dclk->table,
+				   CLK_DIVIDER_ROUND_CLOSEST, dclk->width);
+}
+
+static long ma35d1_clkdiv_round_rate(struct clk_hw *hw, unsigned long rate,
+				     unsigned long *prate)
+{
+	struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
+
+	return divider_round_rate(hw, rate, prate, dclk->table,
+				  dclk->width, CLK_DIVIDER_ROUND_CLOSEST);
+}
+
+static int ma35d1_clkdiv_set_rate(struct clk_hw *hw, unsigned long rate,
+				  unsigned long parent_rate)
+{
+	int value;
+	unsigned long flags = 0;
+	u32 data;
+	struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
+
+	value = divider_get_val(rate, parent_rate, dclk->table,
+				dclk->width, CLK_DIVIDER_ROUND_CLOSEST);
+
+	if (dclk->lock)
+		spin_lock_irqsave(dclk->lock, flags);
+
+	data = readl_relaxed(dclk->reg);
+	data &= ~(div_mask(dclk->width) << dclk->shift);
+	data |= (value - 1) << dclk->shift;
+	data |= dclk->mask;
+
+	writel_relaxed(data, dclk->reg);
+
+	if (dclk->lock)
+		spin_unlock_irqrestore(dclk->lock, flags);
+
+	return 0;
+}
+
+static const struct clk_ops ma35d1_adc_clkdiv_ops = {
+	.recalc_rate = ma35d1_clkdiv_recalc_rate,
+	.round_rate = ma35d1_clkdiv_round_rate,
+	.set_rate = ma35d1_clkdiv_set_rate,
+};
+
+struct clk_hw *ma35d1_reg_adc_clkdiv(struct device *dev, const char *name,
+				     const char *parent_name,
+				     unsigned long flags, void __iomem *reg,
+				     u8 shift, u8 width, u32 mask_bit)
+{
+	struct ma35d1_adc_clk_divider *div;
+	struct clk_init_data init;
+	struct clk_div_table *table;
+	u32 max_div, min_div;
+	struct clk_hw *hw;
+	int ret;
+	int i;
+
+	/* allocate the divider */
+	div = kzalloc(sizeof(*div), GFP_KERNEL);
+	if (!div)
+		return ERR_PTR(-ENOMEM);
+
+	/* Init the divider table */
+	max_div = div_mask(width) + 1;
+	min_div = 1;
+
+	table = kcalloc(max_div + 1, sizeof(*table), GFP_KERNEL);
+	if (!table) {
+		kfree(div);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	for (i = 0; i < max_div; i++) {
+		table[i].val = (min_div + i);
+		table[i].div = 2 * table[i].val;
+	}
+	table[max_div].val = 0;
+	table[max_div].div = 0;
+
+	init.name = name;
+	init.ops = &ma35d1_adc_clkdiv_ops;
+	init.flags |= flags;
+	init.parent_names = parent_name ? &parent_name : NULL;
+	init.num_parents = parent_name ? 1 : 0;
+
+	/* struct ma35d1_adc_clk_divider assignments */
+	div->reg = reg;
+	div->shift = shift;
+	div->width = width;
+	div->mask = mask_bit ? BIT(mask_bit) : 0;
+	div->lock = &ma35d1_lock;
+	div->hw.init = &init;
+	div->table = table;
+
+	/* Register the clock */
+	hw = &div->hw;
+	ret = clk_hw_register(NULL, hw);
+	if (ret) {
+		kfree(table);
+		kfree(div);
+		return ERR_PTR(ret);
+	}
+	return hw;
+}
diff --git a/drivers/clk/nuvoton/clk-ma35d1-pll.c b/drivers/clk/nuvoton/clk-ma35d1-pll.c
new file mode 100644
index 000000000000..79e724b148fa
--- /dev/null
+++ b/drivers/clk/nuvoton/clk-ma35d1-pll.c
@@ -0,0 +1,534 @@ 
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2023 Nuvoton Technology Corp.
+ * Author: Chi-Fang Li <cfli0@nuvoton.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/bitfield.h>
+
+#include "clk-ma35d1.h"
+
+#define to_ma35d1_clk_pll(clk) \
+	(container_of(clk, struct ma35d1_clk_pll, clk))
+
+#define PLL0CTL0_FBDIV_MSK	GENMASK(7, 0)
+#define PLL0CTL0_INDIV_MSK	GENMASK(11, 8)
+#define PLL0CTL0_OUTDIV_MSK	GENMASK(13, 12)
+#define PLL0CTL0_PD_MSK		BIT(16)
+#define PLL0CTL0_BP_MSK		BIT(17)
+#define PLLXCTL0_FBDIV_MSK	GENMASK(10, 0)
+#define PLLXCTL0_INDIV_MSK	GENMASK(17, 12)
+#define PLLXCTL0_MODE_MSK	GENMASK(19, 18)
+#define PLLXCTL0_SSRATE_MSK	GENMASK(30, 20)
+#define PLLXCTL1_PD_MSK		BIT(0)
+#define PLLXCTL1_BP_MSK		BIT(1)
+#define PLLXCTL1_OUTDIV_MSK	GENMASK(6, 4)
+#define PLLXCTL1_FRAC_MSK	GENMASK(31, 8)
+#define PLLXCTL2_SLOPE_MSK	GENMASK(23, 0)
+
+struct ma35d1_clk_pll {
+	struct clk_hw hw;
+	u8 type;
+	u8 mode;
+	unsigned long rate;
+	void __iomem *ctl0_base;
+	void __iomem *ctl1_base;
+	void __iomem *ctl2_base;
+	struct regmap *regmap;
+};
+
+struct vsipll_freq_conf_reg_tbl {
+	unsigned long freq;
+	u8 mode;
+	u32 ctl0_reg;
+	u32 ctl1_reg;
+	u32 ctl2_reg;
+};
+
+static const struct vsipll_freq_conf_reg_tbl ma35d1pll_freq[] = {
+	{ 1000000000, VSIPLL_INTEGER_MODE, 0x307d, 0x10, 0 },
+	{ 884736000, VSIPLL_FRACTIONAL_MODE, 0x41024, 0xdd2f1b11, 0 },
+	{ 533000000, VSIPLL_SS_MODE, 0x12b8102c, 0x6aaaab20, 0x12317 },
+	{ }
+};
+
+static void CLK_UnLockReg(struct ma35d1_clk_pll *pll)
+{
+	int ret;
+
+	/* Unlock PLL registers */
+	do {
+		regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x59);
+		regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x16);
+		regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x88);
+		regmap_read(pll->regmap, REG_SYS_RLKTZNS, &ret);
+	} while (ret == 0);
+}
+
+static void CLK_LockReg(struct ma35d1_clk_pll *pll)
+{
+	/* Lock PLL registers */
+	regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x0);
+}
+
+/* SMIC PLL for CAPLL */
+unsigned long CLK_GetPLLFreq_SMICPLL(struct ma35d1_clk_pll *pll,
+				     unsigned long PllSrcClk)
+{
+	u32 u32M, u32N, u32P, u32OutDiv;
+	u32 val;
+	unsigned long u64PllClk;
+	u32 clk_div_table[] = { 1, 2, 4, 8};
+
+	val = __raw_readl(pll->ctl0_base);
+
+	u32N = FIELD_GET(PLL0CTL0_FBDIV_MSK, val);
+	u32M = FIELD_GET(PLL0CTL0_INDIV_MSK, val);
+	u32P = FIELD_GET(PLL0CTL0_OUTDIV_MSK, val);
+	u32OutDiv = clk_div_table[u32P];
+
+	if (val & PLL0CTL0_BP_MSK) {
+		u64PllClk = PllSrcClk;
+	} else {
+		u64PllClk = PllSrcClk * u32N;
+		do_div(u64PllClk, u32M * u32OutDiv);
+	}
+	return u64PllClk;
+}
+
+/* VSI-PLL: INTEGER_MODE */
+unsigned long CLK_CalPLLFreq_Mode0(unsigned long PllSrcClk,
+				   unsigned long u64PllFreq, u32 *u32Reg)
+{
+	u32 u32TmpM, u32TmpN, u32TmpP;
+	u32 u32RngMinN, u32RngMinM, u32RngMinP;
+	u32 u32RngMaxN, u32RngMaxM, u32RngMaxP;
+	u32 u32Tmp, u32Min, u32MinN, u32MinM, u32MinP;
+	unsigned long u64PllClk;
+	unsigned long u64Con1, u64Con2, u64Con3;
+
+	u64PllClk = 0;
+	u32Min = (u32) -1;
+
+	if (!((u64PllFreq >= VSIPLL_FCLKO_MIN_FREQ) &&
+	    (u64PllFreq <= VSIPLL_FCLKO_MAX_FREQ))) {
+		u32Reg[0] = ma35d1pll_freq[0].ctl0_reg;
+		u32Reg[1] = ma35d1pll_freq[0].ctl1_reg;
+		u64PllClk = ma35d1pll_freq[0].freq;
+		return u64PllClk;
+	}
+
+	u32RngMinM = 1UL;
+	u32RngMaxM = 63UL;
+	u32RngMinM = ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) > 1) ?
+		     (PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) : 1;
+	u32RngMaxM = ((PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) < u32RngMaxM) ?
+		     (PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) : u32RngMaxM;
+
+	for (u32TmpM = u32RngMinM; u32TmpM < (u32RngMaxM + 1); u32TmpM++) {
+		u64Con1 = PllSrcClk / u32TmpM;
+		u32RngMinN = 16UL;
+		u32RngMaxN = 2047UL;
+		u32RngMinN = ((VSIPLL_FCLK_MIN_FREQ / u64Con1) > u32RngMinN) ?
+			     (VSIPLL_FCLK_MIN_FREQ / u64Con1) : u32RngMinN;
+		u32RngMaxN = ((VSIPLL_FCLK_MAX_FREQ / u64Con1) < u32RngMaxN) ?
+			     (VSIPLL_FCLK_MAX_FREQ / u64Con1) : u32RngMaxN;
+
+		for (u32TmpN = u32RngMinN; u32TmpN < (u32RngMaxN + 1);
+		     u32TmpN++) {
+			u64Con2 = u64Con1 * u32TmpN;
+			u32RngMinP = 1UL;
+			u32RngMaxP = 7UL;
+			u32RngMinP = ((u64Con2 / VSIPLL_FCLKO_MAX_FREQ) > 1) ?
+				      (u64Con2 / VSIPLL_FCLKO_MAX_FREQ) : 1;
+			u32RngMaxP = ((u64Con2 / VSIPLL_FCLKO_MIN_FREQ) <
+				      u32RngMaxP) ?
+				      (u64Con2 / VSIPLL_FCLKO_MIN_FREQ) :
+				      u32RngMaxP;
+			for (u32TmpP = u32RngMinP; u32TmpP < (u32RngMaxP + 1);
+			     u32TmpP++) {
+				u64Con3 = u64Con2 / u32TmpP;
+				if (u64Con3 > u64PllFreq)
+					u32Tmp = u64Con3 - u64PllFreq;
+				else
+					u32Tmp = u64PllFreq - u64Con3;
+
+				if (u32Tmp < u32Min) {
+					u32Min = u32Tmp;
+					u32MinM = u32TmpM;
+					u32MinN = u32TmpN;
+					u32MinP = u32TmpP;
+
+					if (u32Min == 0UL) {
+						u32Reg[0] = (u32MinM << 12) |
+							    (u32MinN);
+						u32Reg[1] = (u32MinP << 4);
+						return ((PllSrcClk * u32MinN) /
+							(u32MinP * u32MinM));
+					}
+				}
+			}
+		}
+	}
+
+	u32Reg[0] = (u32MinM << 12) | (u32MinN);
+	u32Reg[1] = (u32MinP << 4);
+	u64PllClk = (PllSrcClk * u32MinN) / (u32MinP * u32MinM);
+	return u64PllClk;
+}
+
+/* VSI-PLL: FRACTIONAL_MODE */
+unsigned long CLK_CalPLLFreq_Mode1(unsigned long PllSrcClk,
+				   unsigned long u64PllFreq, u32 *u32Reg)
+{
+	unsigned long u64X, u64N, u64M, u64P, u64tmp;
+	unsigned long u64PllClk, u64FCLKO;
+	u32 u32FRAC;
+
+	if (u64PllFreq > VSIPLL_FCLKO_MAX_FREQ) {
+		u32Reg[0] = ma35d1pll_freq[1].ctl0_reg;
+		u32Reg[1] = ma35d1pll_freq[1].ctl1_reg;
+		u64PllClk = ma35d1pll_freq[1].freq;
+		return u64PllClk;
+	}
+
+	if (u64PllFreq > (VSIPLL_FCLKO_MIN_FREQ/(100-1))) {
+		u64FCLKO = u64PllFreq * ((VSIPLL_FCLKO_MIN_FREQ / u64PllFreq) +
+			   ((VSIPLL_FCLKO_MIN_FREQ % u64PllFreq) ? 1 : 0));
+	} else {
+		pr_err("Failed to set rate %ld\n", u64PllFreq);
+		return 0;
+	}
+
+	u64P = (u64FCLKO >= VSIPLL_FCLK_MIN_FREQ) ? 1 :
+	       ((VSIPLL_FCLK_MIN_FREQ / u64FCLKO) +
+		((VSIPLL_FCLK_MIN_FREQ % u64FCLKO) ? 1 : 0));
+
+	if ((PllSrcClk > (VSIPLL_FREFDIVM_MAX_FREQ * (64-1))) ||
+	    (PllSrcClk < VSIPLL_FREFDIVM_MIN_FREQ1))
+		return 0;
+
+	u64M = (PllSrcClk <= VSIPLL_FREFDIVM_MAX_FREQ) ? 1 :
+	       ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) +
+	       ((PllSrcClk % VSIPLL_FREFDIVM_MAX_FREQ) ? 1 : 0));
+
+	u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk;
+	u64N = u64tmp / 1000;
+	u64X = u64tmp % 1000;
+	u32FRAC = ((u64X << 24) + 500) / 1000;
+	u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;
+
+	u32Reg[0] = (u64M << 12) | (u64N);
+	u32Reg[1] = (u64P << 4) | (u32FRAC << 8);
+	return u64PllClk;
+}
+
+/* VSI-PLL: SS_MODE */
+unsigned long CLK_CalPLLFreq_Mode2(unsigned long PllSrcClk,
+				   unsigned long u64PllFreq,
+				   u32 u32SR, u32 u32Fmod, u32 *u32Reg)
+{
+	unsigned long u64X, u64N, u64M, u64P, u64tmp, u64tmpP, u64tmpM;
+	unsigned long u64SSRATE, u64SLOPE, u64PllClk, u64FCLKO;
+	u32 u32FRAC, i;
+
+	if (u64PllFreq >= VSIPLL_FCLKO_MAX_FREQ) {
+		u32Reg[0] = ma35d1pll_freq[2].ctl0_reg;
+		u32Reg[1] = ma35d1pll_freq[2].ctl1_reg;
+		u32Reg[2] = ma35d1pll_freq[2].ctl2_reg;
+		u64PllClk = ma35d1pll_freq[2].freq;
+		return u64PllClk;
+	}
+
+	if (u64PllFreq < VSIPLL_FCLKO_MIN_FREQ) {
+		u64FCLKO = 0;
+		for (i = 2; i < 8; i++) {
+			u64tmp = (i * u64PllFreq);
+			if (u64tmp > VSIPLL_FCLKO_MIN_FREQ)
+				u64FCLKO = u64tmp;
+		}
+		if (u64FCLKO == 0) {
+			pr_err("Failed to set rate %ld\n", u64PllFreq);
+			return 0;
+		}
+
+	} else
+		u64FCLKO = u64PllFreq;
+
+	u64P = 0;
+	for (i = 1; i < 8; i++) {
+		u64tmpP = i * u64FCLKO;
+		if ((u64tmpP <= VSIPLL_FCLK_MAX_FREQ) &&
+		    (u64tmpP >= VSIPLL_FCLK_MIN_FREQ)) {
+			u64P = i;
+			break;
+		}
+	}
+
+	if (u64P == 0)
+		return 0;
+
+	u64M = 0;
+	for (i = 1; i < 64; i++) {
+		u64tmpM = PllSrcClk / i;
+		if ((u64tmpM <= VSIPLL_FREFDIVM_MAX_FREQ) &&
+		    (u64tmpM >= VSIPLL_FREFDIVM_MIN_FREQ1)) {
+			u64M = i;
+			break;
+		}
+	}
+
+	if (u64M == 0)
+		return 0;
+
+	u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk;
+	u64N = u64tmp / 1000;
+	u64X = u64tmp % 1000;
+	u32FRAC = ((u64X << 24) + 500) / 1000;
+
+	u64SSRATE = ((PllSrcClk >> 1) / (u32Fmod * 2)) - 1;
+	u64SLOPE = ((u64tmp * u32SR / u64SSRATE) << 24) / 100 / 1000;
+
+	u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;
+
+	u32Reg[0] = (u64SSRATE << VSIPLLCTL0_SSRATE_POS) | (u64M <<
+		     VSIPLLCTL0_INDIV_POS) | (u64N);
+	u32Reg[1] = (u64P << VSIPLLCTL1_OUTDIV_POS) | (u32FRAC << VSIPLLCTL1_FRAC_POS);
+	u32Reg[2] = u64SLOPE;
+	return u64PllClk;
+}
+
+unsigned long CLK_SetPLLFreq(struct ma35d1_clk_pll *pll,
+			     unsigned long PllSrcClk,
+			     unsigned long u64PllFreq)
+{
+	u32 u32Reg[3] = { 0 }, val_ctl0, val_ctl1, val_ctl2;
+	unsigned long u64PllClk;
+
+	val_ctl0 = __raw_readl(pll->ctl0_base);
+	val_ctl1 = __raw_readl(pll->ctl1_base);
+	val_ctl2 = __raw_readl(pll->ctl2_base);
+
+	switch (pll->mode) {
+	case VSIPLL_INTEGER_MODE:
+		u64PllClk = CLK_CalPLLFreq_Mode0(PllSrcClk, u64PllFreq,
+						 u32Reg);
+		val_ctl0 = u32Reg[0] |
+			   (VSIPLL_INTEGER_MODE << VSIPLLCTL0_MODE_POS);
+		break;
+	case VSIPLL_FRACTIONAL_MODE:
+		u64PllClk = CLK_CalPLLFreq_Mode1(PllSrcClk, u64PllFreq,
+						 u32Reg);
+		val_ctl0 = u32Reg[0] |
+			   (VSIPLL_FRACTIONAL_MODE << VSIPLLCTL0_MODE_POS);
+		break;
+	case VSIPLL_SS_MODE:
+		u64PllClk = CLK_CalPLLFreq_Mode2(PllSrcClk, u64PllFreq,
+						 VSIPLL_MODULATION_FREQ,
+						 VSIPLL_SPREAD_RANGE, u32Reg);
+		val_ctl0 = u32Reg[0] |
+			   (VSIPLL_SS_MODE << VSIPLLCTL0_MODE_POS);
+		break;
+	}
+
+	val_ctl1 = VSIPLLCTL1_PD_MSK | u32Reg[1];
+	val_ctl2 = u32Reg[2];
+
+	__raw_writel(val_ctl0, pll->ctl0_base);
+	__raw_writel(val_ctl1, pll->ctl1_base);
+	__raw_writel(val_ctl2, pll->ctl2_base);
+	return u64PllClk;
+}
+
+unsigned long CLK_GetPLLFreq_VSIPLL(struct ma35d1_clk_pll *pll,
+				    unsigned long PllSrcClk)
+{
+	u32 u32M, u32N, u32P, u32X, u32SR, u32FMOD;
+	u32 val_ctl0, val_ctl1, val_ctl2;
+	unsigned long u64PllClk, u64X;
+
+	val_ctl0 = __raw_readl(pll->ctl0_base);
+	val_ctl1 = __raw_readl(pll->ctl1_base);
+	val_ctl2 = __raw_readl(pll->ctl2_base);
+
+	if (val_ctl1 & PLLXCTL1_BP_MSK) {
+		u64PllClk = PllSrcClk;
+		return u64PllClk;
+	}
+
+	if (pll->mode == VSIPLL_INTEGER_MODE) {
+		u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
+		u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
+		u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
+
+		u64PllClk = PllSrcClk * u32N;
+		do_div(u64PllClk, u32M * u32P);
+
+	} else if (pll->mode == VSIPLL_FRACTIONAL_MODE) {
+		u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
+		u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
+		u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
+		u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1);
+		u64X = (u64) u32X;
+		u64X = (((u64X * 1000) + 500) >> 24);
+		u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) /
+			    1000 / u32P / u32M;
+
+	} else {
+		u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
+		u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
+		u32SR = FIELD_GET(PLLXCTL0_SSRATE_MSK, val_ctl0);
+		u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
+		u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1);
+		u32FMOD = FIELD_GET(PLLXCTL2_SLOPE_MSK, val_ctl2);
+		u64X = (u64) u32X;
+		u64X = ((u64X * 1000) >> 24);
+		u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) /
+			    1000 / u32P / u32M;
+	}
+	return u64PllClk;
+}
+
+static int ma35d1_clk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
+				      unsigned long parent_rate)
+{
+	struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
+
+	if ((parent_rate < VSIPLL_FREF_MIN_FREQ) ||
+	    (parent_rate > VSIPLL_FREF_MAX_FREQ))
+		return 0;
+
+	if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
+		pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
+		return -EACCES;
+	}
+	CLK_UnLockReg(pll);
+	pll->rate = CLK_SetPLLFreq(pll, parent_rate, rate);
+	CLK_LockReg(pll);
+	return 0;
+}
+
+static unsigned long ma35d1_clk_pll_recalc_rate(struct clk_hw *hw,
+						unsigned long parent_rate)
+{
+	unsigned long pllfreq;
+	struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
+
+	if ((parent_rate < VSIPLL_FREF_MIN_FREQ)
+	    || (parent_rate > VSIPLL_FREF_MAX_FREQ))
+		return 0;
+
+	switch (pll->type) {
+	case MA35D1_CAPLL:
+		pllfreq = CLK_GetPLLFreq_SMICPLL(pll, parent_rate);
+		break;
+	case MA35D1_DDRPLL:
+	case MA35D1_APLL:
+	case MA35D1_EPLL:
+	case MA35D1_VPLL:
+		pllfreq = CLK_GetPLLFreq_VSIPLL(pll, parent_rate);
+		break;
+	}
+
+	return pllfreq;
+}
+
+static long ma35d1_clk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
+				      unsigned long *prate)
+{
+	return rate;
+}
+
+static int ma35d1_clk_pll_is_prepared(struct clk_hw *hw)
+{
+	struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
+	u32 val = __raw_readl(pll->ctl1_base);
+
+	return (val & VSIPLLCTL1_PD_MSK) ? 0 : 1;
+}
+
+static int ma35d1_clk_pll_prepare(struct clk_hw *hw)
+{
+	struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
+	u32 val;
+
+	if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
+		pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
+		return -EACCES;
+	}
+
+	CLK_UnLockReg(pll);
+	val = __raw_readl(pll->ctl1_base);
+	val &= ~VSIPLLCTL1_PD_MSK;
+	__raw_writel(val, pll->ctl1_base);
+	CLK_LockReg(pll);
+	return 0;
+}
+
+static void ma35d1_clk_pll_unprepare(struct clk_hw *hw)
+{
+	struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
+	u32 val;
+
+	if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
+		pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
+	} else {
+		val = __raw_readl(pll->ctl1_base);
+		val |= VSIPLLCTL1_PD_MSK;
+		__raw_writel(val, pll->ctl1_base);
+	}
+}
+
+static const struct clk_ops ma35d1_clk_pll_ops = {
+	.is_prepared = ma35d1_clk_pll_is_prepared,
+	.prepare = ma35d1_clk_pll_prepare,
+	.unprepare = ma35d1_clk_pll_unprepare,
+	.set_rate = ma35d1_clk_pll_set_rate,
+	.recalc_rate = ma35d1_clk_pll_recalc_rate,
+	.round_rate = ma35d1_clk_pll_round_rate,
+};
+
+struct clk_hw *ma35d1_reg_clk_pll(enum ma35d1_pll_type type,
+				  u8 u8mode, const char *name,
+				  const char *parent,
+				  unsigned long targetFreq,
+				  void __iomem *base,
+				  struct regmap *regmap)
+{
+	struct ma35d1_clk_pll *pll;
+	struct clk_hw *hw;
+	struct clk_init_data init;
+	int ret;
+
+	pll = kmalloc(sizeof(*pll), GFP_KERNEL);
+	if (!pll)
+		return ERR_PTR(-ENOMEM);
+
+	pll->type = type;
+	pll->mode = u8mode;
+	pll->rate = targetFreq;
+	pll->ctl0_base = base + VSIPLL_CTL0;
+	pll->ctl1_base = base + VSIPLL_CTL1;
+	pll->ctl2_base = base + VSIPLL_CTL2;
+	pll->regmap = regmap;
+
+	init.name = name;
+	init.flags = 0;
+	init.parent_names = &parent;
+	init.num_parents = 1;
+	init.ops = &ma35d1_clk_pll_ops;
+	pll->hw.init = &init;
+	hw = &pll->hw;
+
+	ret = clk_hw_register(NULL, hw);
+	if (ret) {
+		pr_err("failed to register vsi-pll clock!!!\n");
+		kfree(pll);
+		return ERR_PTR(ret);
+	}
+	return hw;
+}
diff --git a/drivers/clk/nuvoton/clk-ma35d1.c b/drivers/clk/nuvoton/clk-ma35d1.c
new file mode 100644
index 000000000000..ac8154458b81
--- /dev/null
+++ b/drivers/clk/nuvoton/clk-ma35d1.c
@@ -0,0 +1,970 @@ 
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2023 Nuvoton Technology Corp.
+ * Author: Chi-Fang Li <cfli0@nuvoton.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/clkdev.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/spinlock.h>
+#include <dt-bindings/clock/nuvoton,ma35d1-clk.h>
+
+#include "clk-ma35d1.h"
+
+DEFINE_SPINLOCK(ma35d1_lock);
+
+static const char *const ca35clk_sel_clks[] = {
+	"hxt", "capll", "ddrpll", "dummy"
+};
+
+static const char *const sysclk0_sel_clks[] = {
+	"epll_div2", "syspll"
+};
+
+static const char *const sysclk1_sel_clks[] = {
+	"hxt", "syspll"
+};
+
+static const char *const axiclk_sel_clks[] = {
+	"capll_div2", "capll_div4"
+};
+
+static const char *const ccap_sel_clks[] = {
+	"hxt", "vpll", "apll", "syspll"
+};
+
+static const char *const sdh_sel_clks[] = {
+	"syspll", "apll", "dummy", "dummy"
+};
+
+static const char *const dcu_sel_clks[] = {
+	"epll_div2", "syspll"
+};
+
+static const char *const gfx_sel_clks[] = {
+	"epll", "syspll"
+};
+
+static const char *const dbg_sel_clks[] = {
+	"hirc", "syspll"
+};
+
+static const char *const timer0_sel_clks[] = {
+	"hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer1_sel_clks[] = {
+	"hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer2_sel_clks[] = {
+	"hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer3_sel_clks[] = {
+	"hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer4_sel_clks[] = {
+	"hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer5_sel_clks[] = {
+	"hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer6_sel_clks[] = {
+	"hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer7_sel_clks[] = {
+	"hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer8_sel_clks[] = {
+	"hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer9_sel_clks[] = {
+	"hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer10_sel_clks[] = {
+	"hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const timer11_sel_clks[] = {
+	"hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
+};
+
+static const char *const uart_sel_clks[] = {
+	"hxt", "sysclk1_div2", "dummy", "dummy"
+};
+
+static const char *const wdt0_sel_clks[] = {
+	"dummy", "lxt", "pclk3_div4096", "lirc"
+};
+
+static const char *const wdt1_sel_clks[] = {
+	"dummy", "lxt", "pclk3_div4096", "lirc"
+};
+
+static const char *const wdt2_sel_clks[] = {
+	"dummy", "lxt", "pclk4_div4096", "lirc"
+};
+
+static const char *const wwdt0_sel_clks[] = {
+	"dummy", "dummy", "pclk3_div4096", "lirc"
+};
+
+static const char *const wwdt1_sel_clks[] = {
+	"dummy", "dummy", "pclk3_div4096", "lirc"
+};
+
+static const char *const wwdt2_sel_clks[] = {
+	"dummy", "dummy", "pclk4_div4096", "lirc"
+};
+
+static const char *const spi0_sel_clks[] = {
+	"pclk1", "apll", "dummy", "dummy"
+};
+
+static const char *const spi1_sel_clks[] = {
+	"pclk2", "apll", "dummy", "dummy"
+};
+
+static const char *const spi2_sel_clks[] = {
+	"pclk1", "apll", "dummy", "dummy"
+};
+
+static const char *const spi3_sel_clks[] = {
+	"pclk2", "apll", "dummy", "dummy"
+};
+
+static const char *const qspi0_sel_clks[] = {
+	"pclk0", "apll", "dummy", "dummy"
+};
+
+static const char *const qspi1_sel_clks[] = {
+	"pclk0", "apll", "dummy", "dummy"
+};
+
+static const char *const i2s0_sel_clks[] = {
+	"apll", "sysclk1_div2", "dummy", "dummy"
+};
+
+static const char *const i2s1_sel_clks[] = {
+	"apll", "sysclk1_div2", "dummy", "dummy"
+};
+
+static const char *const can_sel_clks[] = {
+	"apll", "vpll"
+};
+
+static const char *const cko_sel_clks[] = {
+	"hxt", "lxt", "hirc", "lirc", "capll_div4", "syspll",
+	"ddrpll", "epll_div2", "apll", "vpll", "dummy", "dummy",
+	"dummy", "dummy", "dummy", "dummy"
+};
+
+static const char *const smc_sel_clks[] = {
+	"hxt", "pclk4"
+};
+
+static const char *const kpi_sel_clks[] = {
+	"hxt", "lxt"
+};
+
+static const struct clk_div_table ip_div_table[] = {
+	{0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10},
+	{5, 12}, {6, 14}, {7, 16}, {0, 0},
+};
+
+static const struct clk_div_table eadc_div_table[] = {
+	{0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10},
+	{5, 12}, {6, 14}, {7, 16}, {8, 18},
+	{9, 20}, {10, 22}, {11, 24}, {12, 26},
+	{13, 28}, {14, 30}, {15, 32}, {0, 0},
+};
+
+static struct clk_hw **hws;
+static struct clk_hw_onecell_data *ma35d1_hw_data;
+
+static int ma35d1_clocks_probe(struct platform_device *pdev)
+{
+	int ret;
+	struct device *dev = &pdev->dev;
+	struct device_node *clk_node = dev->of_node;
+	void __iomem *clk_base;
+	struct regmap *regmap;
+	u32 pllmode[5] = { 0, 0, 0, 0, 0 };
+	u32 pllfreq[5] = { 0, 0, 0, 0, 0 };
+
+	dev_info(&pdev->dev, "Nuvoton MA35D1 Clock Driver\n");
+	ma35d1_hw_data = devm_kzalloc(&pdev->dev, struct_size(ma35d1_hw_data,
+				      hws, CLK_MAX_IDX), GFP_KERNEL);
+
+	if (WARN_ON(!ma35d1_hw_data))
+		return -ENOMEM;
+
+	ma35d1_hw_data->num = CLK_MAX_IDX;
+	hws = ma35d1_hw_data->hws;
+
+	clk_node = of_find_compatible_node(NULL, NULL, "nuvoton,ma35d1-clk");
+	clk_base = of_iomap(clk_node, 0);
+	of_node_put(clk_node);
+	if (!clk_base) {
+		pr_err("%s: could not map region\n", __func__);
+		return -ENOMEM;
+	}
+	regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
+						 "nuvoton,sys");
+	if (IS_ERR(regmap))
+		pr_warn("%s: Unable to get syscon\n", __func__);
+
+	/* clock sources */
+	hws[HXT] = ma35d1_clk_fixed("hxt", 24000000);
+	hws[HXT_GATE] = ma35d1_clk_gate("hxt_gate", "hxt",
+					clk_base + REG_CLK_PWRCTL, 0);
+	hws[LXT] = ma35d1_clk_fixed("lxt", 32768);
+	hws[LXT_GATE] = ma35d1_clk_gate("lxt_gate", "lxt",
+					clk_base + REG_CLK_PWRCTL, 1);
+	hws[HIRC] = ma35d1_clk_fixed("hirc", 12000000);
+	hws[HIRC_GATE] = ma35d1_clk_gate("hirc_gate", "hirc",
+					 clk_base + REG_CLK_PWRCTL, 2);
+	hws[LIRC] = ma35d1_clk_fixed("lirc", 32000);
+	hws[LIRC_GATE] = ma35d1_clk_gate("lirc_gate", "lirc",
+					 clk_base + REG_CLK_PWRCTL, 3);
+
+	/* PLL */
+	of_property_read_u32_array(clk_node, "clock-pll-mode", pllmode,
+				   ARRAY_SIZE(pllmode));
+	of_property_read_u32_array(clk_node, "assigned-clock-rates", pllfreq,
+				   ARRAY_SIZE(pllfreq));
+
+	/* SMIC PLL */
+	hws[CAPLL] = ma35d1_reg_clk_pll(MA35D1_CAPLL, pllmode[0], "capll",
+					"hxt", pllfreq[0],
+					clk_base + REG_CLK_PLL0CTL0, regmap);
+	hws[SYSPLL] = ma35d1_clk_fixed("syspll", 180000000);
+
+	/* VSI PLL */
+	hws[DDRPLL] = ma35d1_reg_clk_pll(MA35D1_DDRPLL, pllmode[1], "ddrpll",
+					 "hxt", pllfreq[1],
+					 clk_base + REG_CLK_PLL2CTL0, regmap);
+	hws[APLL] = ma35d1_reg_clk_pll(MA35D1_APLL, pllmode[2], "apll", "hxt",
+				       pllfreq[2], clk_base + REG_CLK_PLL3CTL0,
+				       regmap);
+	hws[EPLL] = ma35d1_reg_clk_pll(MA35D1_EPLL, pllmode[3], "epll", "hxt",
+				       pllfreq[3], clk_base + REG_CLK_PLL4CTL0,
+				       regmap);
+	hws[VPLL] = ma35d1_reg_clk_pll(MA35D1_VPLL, pllmode[4], "vpll", "hxt",
+				       pllfreq[4], clk_base + REG_CLK_PLL5CTL0,
+				       regmap);
+	hws[EPLL_DIV2] = ma35d1_clk_fixed_factor("epll_div2", "epll", 1, 2);
+	hws[EPLL_DIV4] = ma35d1_clk_fixed_factor("epll_div4", "epll", 1, 4);
+	hws[EPLL_DIV8] = ma35d1_clk_fixed_factor("epll_div8", "epll", 1, 8);
+
+	/* CA35 */
+	hws[CA35CLK_MUX] = ma35d1_clk_mux("ca35clk_mux",
+					  clk_base + REG_CLK_CLKSEL0, 0,
+					  2, ca35clk_sel_clks,
+					  ARRAY_SIZE(ca35clk_sel_clks));
+
+	/* AXI */
+	hws[AXICLK_DIV2] = ma35d1_clk_fixed_factor("capll_div2", "ca35clk_mux",
+						   1, 2);
+	hws[AXICLK_DIV4] = ma35d1_clk_fixed_factor("capll_div4", "ca35clk_mux",
+						   1, 4);
+	hws[AXICLK_MUX] = ma35d1_clk_mux("axiclk_mux",
+					 clk_base + REG_CLK_CLKDIV0,
+					 26, 1, axiclk_sel_clks,
+					 ARRAY_SIZE(axiclk_sel_clks));
+
+	/* SYSCLK0 & SYSCLK1 */
+	hws[SYSCLK0_MUX] = ma35d1_clk_mux("sysclk0_mux",
+					  clk_base + REG_CLK_CLKSEL0,
+					  2, 1, sysclk0_sel_clks,
+					  ARRAY_SIZE(sysclk0_sel_clks));
+	hws[SYSCLK1_MUX] = ma35d1_clk_mux("sysclk1_mux",
+					  clk_base + REG_CLK_CLKSEL0,
+					  4, 1, sysclk1_sel_clks,
+					  ARRAY_SIZE(sysclk1_sel_clks));
+	hws[SYSCLK1_DIV2] = ma35d1_clk_fixed_factor("sysclk1_div2",
+						    "sysclk1_mux", 1, 2);
+
+	/* HCLK0~3 & PCLK0~4 */
+	hws[HCLK0] = ma35d1_clk_fixed_factor("hclk0", "sysclk1_mux", 1, 1);
+	hws[HCLK1] = ma35d1_clk_fixed_factor("hclk1", "sysclk1_mux", 1, 1);
+	hws[HCLK2] = ma35d1_clk_fixed_factor("hclk2", "sysclk1_mux", 1, 1);
+	hws[PCLK0] = ma35d1_clk_fixed_factor("pclk0", "sysclk1_mux", 1, 1);
+	hws[PCLK1] = ma35d1_clk_fixed_factor("pclk1", "sysclk1_mux", 1, 1);
+	hws[PCLK2] = ma35d1_clk_fixed_factor("pclk2", "sysclk1_mux", 1, 1);
+
+	hws[HCLK3] = ma35d1_clk_fixed_factor("hclk3", "sysclk1_mux", 1, 2);
+	hws[PCLK3] = ma35d1_clk_fixed_factor("pclk3", "sysclk1_mux", 1, 2);
+	hws[PCLK4] = ma35d1_clk_fixed_factor("pclk4", "sysclk1_mux", 1, 2);
+
+	hws[USBPHY0] = ma35d1_clk_fixed("usbphy0", 480000000);
+	hws[USBPHY1] = ma35d1_clk_fixed("usbphy1", 480000000);
+
+	/* DDR */
+	hws[DDR0_GATE] = ma35d1_clk_gate("ddr0_gate", "ddrpll",
+					 clk_base + REG_CLK_SYSCLK0, 4);
+	hws[DDR6_GATE] = ma35d1_clk_gate("ddr6_gate", "ddrpll",
+					 clk_base + REG_CLK_SYSCLK0, 5);
+
+	/* CAN0 */
+	hws[CAN0_MUX] = ma35d1_clk_mux("can0_mux", clk_base + REG_CLK_CLKSEL4,
+				       16, 1, can_sel_clks,
+				       ARRAY_SIZE(can_sel_clks));
+	hws[CAN0_DIV] = ma35d1_clk_divider_table("can0_div", "can0_mux",
+						 clk_base + REG_CLK_CLKDIV0,
+						 0, 3, ip_div_table);
+	hws[CAN0_GATE] = ma35d1_clk_gate("can0_gate", "can0_div",
+					 clk_base + REG_CLK_SYSCLK0, 8);
+
+	/* CAN1 */
+	hws[CAN1_MUX] = ma35d1_clk_mux("can1_mux", clk_base + REG_CLK_CLKSEL4,
+				       17, 1, can_sel_clks,
+				       ARRAY_SIZE(can_sel_clks));
+	hws[CAN1_DIV] = ma35d1_clk_divider_table("can1_div", "can1_mux",
+						 clk_base + REG_CLK_CLKDIV0,
+						 4, 3, ip_div_table);
+	hws[CAN1_GATE] = ma35d1_clk_gate("can1_gate", "can1_div",
+					 clk_base + REG_CLK_SYSCLK0, 9);
+
+	/* CAN2 */
+	hws[CAN2_MUX] = ma35d1_clk_mux("can2_mux", clk_base + REG_CLK_CLKSEL4,
+				       18, 1, can_sel_clks,
+				       ARRAY_SIZE(can_sel_clks));
+	hws[CAN2_DIV] = ma35d1_clk_divider_table("can2_div", "can2_mux",
+						 clk_base + REG_CLK_CLKDIV0,
+						 8, 3, ip_div_table);
+	hws[CAN2_GATE] = ma35d1_clk_gate("can2_gate", "can2_div",
+					 clk_base + REG_CLK_SYSCLK0, 10);
+
+	/* CAN3 */
+	hws[CAN3_MUX] = ma35d1_clk_mux("can3_mux", clk_base + REG_CLK_CLKSEL4,
+				       19, 1, can_sel_clks,
+				       ARRAY_SIZE(can_sel_clks));
+	hws[CAN3_DIV] = ma35d1_clk_divider_table("can3_div", "can3_mux",
+						 clk_base + REG_CLK_CLKDIV0,
+						 12, 3, ip_div_table);
+	hws[CAN3_GATE] = ma35d1_clk_gate("can3_gate", "can3_div",
+					 clk_base + REG_CLK_SYSCLK0, 11);
+
+	/* SDH0 */
+	hws[SDH0_MUX] = ma35d1_clk_mux("sdh0_mux", clk_base + REG_CLK_CLKSEL0,
+				       16, 2, sdh_sel_clks,
+				       ARRAY_SIZE(sdh_sel_clks));
+	hws[SDH0_GATE] = ma35d1_clk_gate("sdh0_gate", "sdh0_mux",
+					 clk_base + REG_CLK_SYSCLK0, 16);
+
+	/* SDH1 */
+	hws[SDH1_MUX] = ma35d1_clk_mux("sdh1_mux", clk_base + REG_CLK_CLKSEL0,
+				       18, 2, sdh_sel_clks,
+				       ARRAY_SIZE(sdh_sel_clks));
+	hws[SDH1_GATE] = ma35d1_clk_gate("sdh1_gate", "sdh1_mux",
+					 clk_base + REG_CLK_SYSCLK0, 17);
+
+	/* NAND */
+	hws[NAND_GATE] = ma35d1_clk_gate("nand_gate", "hclk1",
+					 clk_base + REG_CLK_SYSCLK0, 18);
+
+	/* USB */
+	hws[USBD_GATE] = ma35d1_clk_gate("usbd_gate", "usbphy0",
+					 clk_base + REG_CLK_SYSCLK0, 19);
+	hws[USBH_GATE] = ma35d1_clk_gate("usbh_gate", "usbphy0",
+					 clk_base + REG_CLK_SYSCLK0, 20);
+	hws[HUSBH0_GATE] = ma35d1_clk_gate("husbh0_gate", "usbphy0",
+					   clk_base + REG_CLK_SYSCLK0, 21);
+	hws[HUSBH1_GATE] = ma35d1_clk_gate("husbh1_gate", "usbphy0",
+					   clk_base + REG_CLK_SYSCLK0, 22);
+
+	/* GFX */
+	hws[GFX_MUX] = ma35d1_clk_mux("gfx_mux", clk_base + REG_CLK_CLKSEL0,
+				      26, 1, gfx_sel_clks,
+				      ARRAY_SIZE(gfx_sel_clks));
+	hws[GFX_GATE] = ma35d1_clk_gate("gfx_gate", "gfx_mux",
+					clk_base + REG_CLK_SYSCLK0, 24);
+
+	/* VC8K */
+	hws[VC8K_GATE] = ma35d1_clk_gate("vc8k_gate", "sysclk0_mux",
+					 clk_base + REG_CLK_SYSCLK0, 25);
+
+	/* DCU */
+	hws[DCU_MUX] = ma35d1_clk_mux("dcu_mux", clk_base + REG_CLK_CLKSEL0,
+				      24, 1, dcu_sel_clks,
+				      ARRAY_SIZE(dcu_sel_clks));
+	hws[DCU_GATE] = ma35d1_clk_gate("dcu_gate", "dcu_mux",
+					clk_base + REG_CLK_SYSCLK0, 26);
+
+	/* DCUP */
+	hws[DCUP_DIV] = ma35d1_clk_divider_table("dcup_div", "vpll",
+						 clk_base + REG_CLK_CLKDIV0,
+						 16, 3, ip_div_table);
+
+	/* EMAC0 */
+	hws[EMAC0_GATE] = ma35d1_clk_gate("emac0_gate", "epll_div2",
+					  clk_base + REG_CLK_SYSCLK0, 27);
+
+	/* EMAC1 */
+	hws[EMAC1_GATE] = ma35d1_clk_gate("emac1_gate", "epll_div2",
+					  clk_base + REG_CLK_SYSCLK0, 28);
+
+	/* CCAP0 */
+	hws[CCAP0_MUX] = ma35d1_clk_mux("ccap0_mux",
+					clk_base + REG_CLK_CLKSEL0,
+					12, 1, ccap_sel_clks,
+					ARRAY_SIZE(ccap_sel_clks));
+	hws[CCAP0_DIV] = ma35d1_clk_divider("ccap0_div", "ccap0_mux",
+					    clk_base + REG_CLK_CLKDIV1, 8, 4);
+	hws[CCAP0_GATE] = ma35d1_clk_gate("ccap0_gate", "ccap0_div",
+					  clk_base + REG_CLK_SYSCLK0, 29);
+
+	/* CCAP1 */
+	hws[CCAP1_MUX] = ma35d1_clk_mux("ccap1_mux",
+					clk_base + REG_CLK_CLKSEL0,
+					14, 1, ccap_sel_clks,
+					ARRAY_SIZE(ccap_sel_clks));
+	hws[CCAP1_DIV] = ma35d1_clk_divider("ccap1_div", "ccap1_mux",
+					    clk_base + REG_CLK_CLKDIV1,
+					    12, 4);
+	hws[CCAP1_GATE] = ma35d1_clk_gate("ccap1_gate", "ccap1_div",
+					  clk_base + REG_CLK_SYSCLK0, 30);
+
+	/* PDMA0~3 */
+	hws[PDMA0_GATE] = ma35d1_clk_gate("pdma0_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 0);
+	hws[PDMA1_GATE] = ma35d1_clk_gate("pdma1_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 1);
+	hws[PDMA2_GATE] = ma35d1_clk_gate("pdma2_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 2);
+	hws[PDMA3_GATE] = ma35d1_clk_gate("pdma3_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 3);
+
+	/* WH0~1 */
+	hws[WH0_GATE] = ma35d1_clk_gate("wh0_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 4);
+	hws[WH1_GATE] = ma35d1_clk_gate("wh1_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 5);
+
+	/* HWS */
+	hws[HWS_GATE] = ma35d1_clk_gate("hws_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 6);
+
+	/* EBI */
+	hws[EBI_GATE] = ma35d1_clk_gate("ebi_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 7);
+
+	/* SRAM0~1 */
+	hws[SRAM0_GATE] = ma35d1_clk_gate("sram0_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 8);
+	hws[SRAM1_GATE] = ma35d1_clk_gate("sram1_gate", "hclk0",
+					  clk_base + REG_CLK_SYSCLK1, 9);
+
+	/* ROM */
+	hws[ROM_GATE] = ma35d1_clk_gate("rom_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 10);
+
+	/* TRA */
+	hws[TRA_GATE] = ma35d1_clk_gate("tra_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 11);
+
+	/* DBG */
+	hws[DBG_MUX] = ma35d1_clk_mux("dbg_mux", clk_base + REG_CLK_CLKSEL0,
+				      27, 1, dbg_sel_clks,
+				      ARRAY_SIZE(dbg_sel_clks));
+	hws[DBG_GATE] = ma35d1_clk_gate("dbg_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 12);
+
+	/* CLKO */
+	hws[CKO_MUX] = ma35d1_clk_mux("cko_mux", clk_base + REG_CLK_CLKSEL4,
+				      24, 4, cko_sel_clks,
+				      ARRAY_SIZE(cko_sel_clks));
+	hws[CKO_DIV] = ma35d1_clk_divider_pow2("cko_div", "cko_mux",
+					       clk_base + REG_CLK_CLKOCTL,
+					       0, 4);
+	hws[CKO_GATE] = ma35d1_clk_gate("cko_gate", "cko_div",
+					clk_base + REG_CLK_SYSCLK1, 13);
+
+	/* GTMR */
+	hws[GTMR_GATE] = ma35d1_clk_gate("gtmr_gate", "hirc",
+					 clk_base + REG_CLK_SYSCLK1, 14);
+
+	/* GPIO */
+	hws[GPA_GATE] = ma35d1_clk_gate("gpa_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 16);
+	hws[GPB_GATE] = ma35d1_clk_gate("gpb_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 17);
+	hws[GPC_GATE] = ma35d1_clk_gate("gpc_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 18);
+	hws[GPD_GATE] = ma35d1_clk_gate("gpd_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 19);
+	hws[GPE_GATE] = ma35d1_clk_gate("gpe_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 20);
+	hws[GPF_GATE] = ma35d1_clk_gate("gpf_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 21);
+	hws[GPG_GATE] = ma35d1_clk_gate("gpg_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 22);
+	hws[GPH_GATE] = ma35d1_clk_gate("gph_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 23);
+	hws[GPI_GATE] = ma35d1_clk_gate("gpi_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 24);
+	hws[GPJ_GATE] = ma35d1_clk_gate("gpj_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 25);
+	hws[GPK_GATE] = ma35d1_clk_gate("gpk_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 26);
+	hws[GPL_GATE] = ma35d1_clk_gate("gpl_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 27);
+	hws[GPM_GATE] = ma35d1_clk_gate("gpm_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 28);
+	hws[GPN_GATE] = ma35d1_clk_gate("gpn_gate", "hclk0",
+					clk_base + REG_CLK_SYSCLK1, 29);
+
+	/* TIMER0~11 */
+	hws[TMR0_MUX] = ma35d1_clk_mux("tmr0_mux", clk_base + REG_CLK_CLKSEL1,
+				       0, 3, timer0_sel_clks,
+				       ARRAY_SIZE(timer0_sel_clks));
+	hws[TMR0_GATE] = ma35d1_clk_gate("tmr0_gate", "tmr0_mux",
+					 clk_base + REG_CLK_APBCLK0, 0);
+	hws[TMR1_MUX] = ma35d1_clk_mux("tmr1_mux", clk_base + REG_CLK_CLKSEL1,
+				       4, 3, timer1_sel_clks,
+				       ARRAY_SIZE(timer1_sel_clks));
+	hws[TMR1_GATE] = ma35d1_clk_gate("tmr1_gate", "tmr1_mux",
+					 clk_base + REG_CLK_APBCLK0, 1);
+	hws[TMR2_MUX] = ma35d1_clk_mux("tmr2_mux", clk_base + REG_CLK_CLKSEL1,
+				       8, 3, timer2_sel_clks,
+				       ARRAY_SIZE(timer2_sel_clks));
+	hws[TMR2_GATE] = ma35d1_clk_gate("tmr2_gate", "tmr2_mux",
+					 clk_base + REG_CLK_APBCLK0, 2);
+	hws[TMR3_MUX] = ma35d1_clk_mux("tmr3_mux", clk_base + REG_CLK_CLKSEL1,
+				       12, 3, timer3_sel_clks,
+				       ARRAY_SIZE(timer3_sel_clks));
+	hws[TMR3_GATE] = ma35d1_clk_gate("tmr3_gate", "tmr3_mux",
+					 clk_base + REG_CLK_APBCLK0, 3);
+	hws[TMR4_MUX] = ma35d1_clk_mux("tmr4_mux", clk_base + REG_CLK_CLKSEL1,
+				       16, 3, timer4_sel_clks,
+				       ARRAY_SIZE(timer4_sel_clks));
+	hws[TMR4_GATE] = ma35d1_clk_gate("tmr4_gate", "tmr4_mux",
+					 clk_base + REG_CLK_APBCLK0, 4);
+	hws[TMR5_MUX] = ma35d1_clk_mux("tmr5_mux", clk_base + REG_CLK_CLKSEL1,
+				       20, 3, timer5_sel_clks,
+				       ARRAY_SIZE(timer5_sel_clks));
+	hws[TMR5_GATE] = ma35d1_clk_gate("tmr5_gate", "tmr5_mux",
+					 clk_base + REG_CLK_APBCLK0, 5);
+	hws[TMR6_MUX] = ma35d1_clk_mux("tmr6_mux", clk_base + REG_CLK_CLKSEL1,
+				       24, 3, timer6_sel_clks,
+				       ARRAY_SIZE(timer6_sel_clks));
+	hws[TMR6_GATE] = ma35d1_clk_gate("tmr6_gate", "tmr6_mux",
+					 clk_base + REG_CLK_APBCLK0, 6);
+	hws[TMR7_MUX] = ma35d1_clk_mux("tmr7_mux", clk_base + REG_CLK_CLKSEL1,
+				       28, 3, timer7_sel_clks,
+				       ARRAY_SIZE(timer7_sel_clks));
+	hws[TMR7_GATE] = ma35d1_clk_gate("tmr7_gate", "tmr7_mux",
+					 clk_base + REG_CLK_APBCLK0, 7);
+	hws[TMR8_MUX] = ma35d1_clk_mux("tmr8_mux", clk_base + REG_CLK_CLKSEL2,
+				       0, 3, timer8_sel_clks,
+				       ARRAY_SIZE(timer8_sel_clks));
+	hws[TMR8_GATE] = ma35d1_clk_gate("tmr8_gate", "tmr8_mux",
+					 clk_base + REG_CLK_APBCLK0, 8);
+	hws[TMR9_MUX] = ma35d1_clk_mux("tmr9_mux", clk_base + REG_CLK_CLKSEL2,
+				       4, 3, timer9_sel_clks,
+				       ARRAY_SIZE(timer9_sel_clks));
+	hws[TMR9_GATE] = ma35d1_clk_gate("tmr9_gate", "tmr9_mux",
+					 clk_base + REG_CLK_APBCLK0, 9);
+	hws[TMR10_MUX] = ma35d1_clk_mux("tmr10_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					8, 3, timer10_sel_clks,
+					ARRAY_SIZE(timer10_sel_clks));
+	hws[TMR10_GATE] = ma35d1_clk_gate("tmr10_gate", "tmr10_mux",
+					  clk_base + REG_CLK_APBCLK0, 10);
+	hws[TMR11_MUX] = ma35d1_clk_mux("tmr11_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					12, 3, timer11_sel_clks,
+					ARRAY_SIZE(timer11_sel_clks));
+	hws[TMR11_GATE] = ma35d1_clk_gate("tmr11_gate", "tmr11_mux",
+					  clk_base + REG_CLK_APBCLK0, 11);
+
+	/* UART0~16 */
+	hws[UART0_MUX] = ma35d1_clk_mux("uart0_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					16, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART0_DIV] = ma35d1_clk_divider("uart0_div", "uart0_mux",
+					    clk_base + REG_CLK_CLKDIV1,
+					    16, 4);
+	hws[UART0_GATE] = ma35d1_clk_gate("uart0_gate", "uart0_div",
+					  clk_base + REG_CLK_APBCLK0, 12);
+	hws[UART1_MUX] = ma35d1_clk_mux("uart1_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					18, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART1_DIV] = ma35d1_clk_divider("uart1_div", "uart1_mux",
+					    clk_base + REG_CLK_CLKDIV1,
+					    20, 4);
+	hws[UART1_GATE] = ma35d1_clk_gate("uart1_gate", "uart1_div",
+					  clk_base + REG_CLK_APBCLK0, 13);
+	hws[UART2_MUX] = ma35d1_clk_mux("uart2_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					20, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART2_DIV] = ma35d1_clk_divider("uart2_div", "uart2_mux",
+					    clk_base + REG_CLK_CLKDIV1,
+					    24, 4);
+	hws[UART2_GATE] = ma35d1_clk_gate("uart2_gate", "uart2_div",
+					  clk_base + REG_CLK_APBCLK0, 14);
+	hws[UART3_MUX] = ma35d1_clk_mux("uart3_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					22, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART3_DIV] = ma35d1_clk_divider("uart3_div", "uart3_mux",
+					    clk_base + REG_CLK_CLKDIV1,
+					    28, 4);
+	hws[UART3_GATE] = ma35d1_clk_gate("uart3_gate", "uart3_div",
+					  clk_base + REG_CLK_APBCLK0, 15);
+	hws[UART4_MUX] = ma35d1_clk_mux("uart4_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					24, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART4_DIV] = ma35d1_clk_divider("uart4_div", "uart4_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    0, 4);
+	hws[UART4_GATE] = ma35d1_clk_gate("uart4_gate", "uart4_div",
+					  clk_base + REG_CLK_APBCLK0, 16);
+	hws[UART5_MUX] = ma35d1_clk_mux("uart5_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					26, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART5_DIV] = ma35d1_clk_divider("uart5_div", "uart5_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    4, 4);
+	hws[UART5_GATE] = ma35d1_clk_gate("uart5_gate", "uart5_div",
+					  clk_base + REG_CLK_APBCLK0, 17);
+	hws[UART6_MUX] = ma35d1_clk_mux("uart6_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					28, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART6_DIV] = ma35d1_clk_divider("uart6_div", "uart6_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    8, 4);
+	hws[UART6_GATE] = ma35d1_clk_gate("uart6_gate", "uart6_div",
+					  clk_base + REG_CLK_APBCLK0, 18);
+	hws[UART7_MUX] = ma35d1_clk_mux("uart7_mux",
+					clk_base + REG_CLK_CLKSEL2,
+					30, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART7_DIV] = ma35d1_clk_divider("uart7_div", "uart7_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    12, 4);
+	hws[UART7_GATE] = ma35d1_clk_gate("uart7_gate", "uart7_div",
+					  clk_base + REG_CLK_APBCLK0, 19);
+	hws[UART8_MUX] = ma35d1_clk_mux("uart8_mux",
+					clk_base + REG_CLK_CLKSEL3,
+					0, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART8_DIV] = ma35d1_clk_divider("uart8_div", "uart8_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    16, 4);
+	hws[UART8_GATE] = ma35d1_clk_gate("uart8_gate", "uart8_div",
+					  clk_base + REG_CLK_APBCLK0, 20);
+	hws[UART9_MUX] = ma35d1_clk_mux("uart9_mux",
+					clk_base + REG_CLK_CLKSEL3,
+					2, 2, uart_sel_clks,
+					ARRAY_SIZE(uart_sel_clks));
+	hws[UART9_DIV] = ma35d1_clk_divider("uart9_div", "uart9_mux",
+					    clk_base + REG_CLK_CLKDIV2,
+					    20, 4);
+	hws[UART9_GATE] = ma35d1_clk_gate("uart9_gate", "uart9_div",
+					  clk_base + REG_CLK_APBCLK0, 21);
+	hws[UART10_MUX] = ma35d1_clk_mux("uart10_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 4, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART10_DIV] = ma35d1_clk_divider("uart10_div", "uart10_mux",
+					     clk_base + REG_CLK_CLKDIV2,
+					     24, 4);
+	hws[UART10_GATE] = ma35d1_clk_gate("uart10_gate", "uart10_div",
+					   clk_base + REG_CLK_APBCLK0, 22);
+	hws[UART11_MUX] = ma35d1_clk_mux("uart11_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 6, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART11_DIV] = ma35d1_clk_divider("uart11_div", "uart11_mux",
+					     clk_base + REG_CLK_CLKDIV2,
+					     28, 4);
+	hws[UART11_GATE] = ma35d1_clk_gate("uart11_gate", "uart11_div",
+					   clk_base + REG_CLK_APBCLK0, 23);
+	hws[UART12_MUX] = ma35d1_clk_mux("uart12_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 8, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART12_DIV] = ma35d1_clk_divider("uart12_div", "uart12_mux",
+					     clk_base + REG_CLK_CLKDIV3,
+					     0, 4);
+	hws[UART12_GATE] = ma35d1_clk_gate("uart12_gate", "uart12_div",
+					   clk_base + REG_CLK_APBCLK0, 24);
+	hws[UART13_MUX] = ma35d1_clk_mux("uart13_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 10, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART13_DIV] = ma35d1_clk_divider("uart13_div", "uart13_mux",
+					     clk_base + REG_CLK_CLKDIV3,
+					     4, 4);
+	hws[UART13_GATE] = ma35d1_clk_gate("uart13_gate", "uart13_div",
+					   clk_base + REG_CLK_APBCLK0, 25);
+	hws[UART14_MUX] = ma35d1_clk_mux("uart14_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 12, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART14_DIV] = ma35d1_clk_divider("uart14_div", "uart14_mux",
+					     clk_base + REG_CLK_CLKDIV3,
+					     8, 4);
+	hws[UART14_GATE] = ma35d1_clk_gate("uart14_gate", "uart14_div",
+					   clk_base + REG_CLK_APBCLK0, 26);
+	hws[UART15_MUX] = ma35d1_clk_mux("uart15_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 14, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART15_DIV] = ma35d1_clk_divider("uart15_div", "uart15_mux",
+					     clk_base + REG_CLK_CLKDIV3,
+					     12, 4);
+	hws[UART15_GATE] = ma35d1_clk_gate("uart15_gate", "uart15_div",
+					   clk_base + REG_CLK_APBCLK0, 27);
+	hws[UART16_MUX] = ma35d1_clk_mux("uart16_mux",
+					 clk_base + REG_CLK_CLKSEL3,
+					 16, 2, uart_sel_clks,
+					 ARRAY_SIZE(uart_sel_clks));
+	hws[UART16_DIV] = ma35d1_clk_divider("uart16_div", "uart16_mux",
+					     clk_base + REG_CLK_CLKDIV3,
+					     16, 4);
+	hws[UART16_GATE] = ma35d1_clk_gate("uart16_gate", "uart16_div",
+					   clk_base + REG_CLK_APBCLK0, 28);
+
+	/* RTC */
+	hws[RTC_GATE] = ma35d1_clk_gate("rtc_gate", "lxt",
+					clk_base + REG_CLK_APBCLK0, 29);
+
+	/* DDRP */
+	hws[DDR_GATE] = ma35d1_clk_gate("ddr_gate", "ddrpll",
+					clk_base + REG_CLK_APBCLK0, 30);
+
+	/* KPI */
+	hws[KPI_MUX] = ma35d1_clk_mux("kpi_mux", clk_base + REG_CLK_CLKSEL4,
+				      30, 1, kpi_sel_clks,
+				      ARRAY_SIZE(kpi_sel_clks));
+	hws[KPI_DIV] = ma35d1_clk_divider("kpi_div", "kpi_mux",
+					  clk_base + REG_CLK_CLKDIV4,
+					  24, 8);
+	hws[KPI_GATE] = ma35d1_clk_gate("kpi_gate", "kpi_div",
+					clk_base + REG_CLK_APBCLK0, 31);
+
+	/* I2C0~5 */
+	hws[I2C0_GATE] = ma35d1_clk_gate("i2c0_gate", "pclk0",
+					 clk_base + REG_CLK_APBCLK1, 0);
+	hws[I2C1_GATE] = ma35d1_clk_gate("i2c1_gate", "pclk1",
+					 clk_base + REG_CLK_APBCLK1, 1);
+	hws[I2C2_GATE] = ma35d1_clk_gate("i2c2_gate", "pclk2",
+					 clk_base + REG_CLK_APBCLK1, 2);
+	hws[I2C3_GATE] = ma35d1_clk_gate("i2c3_gate", "pclk0",
+					 clk_base + REG_CLK_APBCLK1, 3);
+	hws[I2C4_GATE] = ma35d1_clk_gate("i2c4_gate", "pclk1",
+					 clk_base + REG_CLK_APBCLK1, 4);
+	hws[I2C5_GATE] = ma35d1_clk_gate("i2c5_gate", "pclk2",
+					 clk_base + REG_CLK_APBCLK1, 5);
+
+	/* QSPI0~1 */
+	hws[QSPI0_MUX] = ma35d1_clk_mux("qspi0_mux",
+					clk_base + REG_CLK_CLKSEL4,
+					8, 2, qspi0_sel_clks,
+					ARRAY_SIZE(qspi0_sel_clks));
+	hws[QSPI0_GATE] = ma35d1_clk_gate("qspi0_gate", "qspi0_mux",
+					  clk_base + REG_CLK_APBCLK1, 6);
+	hws[QSPI1_MUX] = ma35d1_clk_mux("qspi1_mux",
+					clk_base + REG_CLK_CLKSEL4,
+					10, 2, qspi1_sel_clks,
+					ARRAY_SIZE(qspi1_sel_clks));
+	hws[QSPI1_GATE] = ma35d1_clk_gate("qspi1_gate", "qspi1_mux",
+					  clk_base + REG_CLK_APBCLK1, 7);
+
+	/* SMC0~1 */
+	hws[SMC0_MUX] = ma35d1_clk_mux("smc0_mux",
+					clk_base + REG_CLK_CLKSEL4,
+					28, 1, smc_sel_clks,
+					ARRAY_SIZE(smc_sel_clks));
+	hws[SMC0_DIV] = ma35d1_clk_divider("smc0_div", "smc0_mux",
+					   clk_base + REG_CLK_CLKDIV1,
+					   0, 4);
+	hws[SMC0_GATE] = ma35d1_clk_gate("smc0_gate", "smc0_div",
+					 clk_base + REG_CLK_APBCLK1, 12);
+
+	hws[SMC1_MUX] = ma35d1_clk_mux("smc1_mux",
+					 clk_base + REG_CLK_CLKSEL4,
+					 29, 1, smc_sel_clks,
+					 ARRAY_SIZE(smc_sel_clks));
+	hws[SMC1_DIV] = ma35d1_clk_divider("smc1_div", "smc1_mux",
+					   clk_base + REG_CLK_CLKDIV1,
+					   4, 4);
+	hws[SMC1_GATE] = ma35d1_clk_gate("smc1_gate", "smc1_div",
+					 clk_base + REG_CLK_APBCLK1, 13);
+
+	/* WDT0~2 */
+	hws[WDT0_MUX] = ma35d1_clk_mux("wdt0_mux",
+				       clk_base + REG_CLK_CLKSEL3,
+				       20, 2, wdt0_sel_clks,
+				       ARRAY_SIZE(wdt0_sel_clks));
+	hws[WDT0_GATE] = ma35d1_clk_gate("wdt0_gate", "wdt0_mux",
+					 clk_base + REG_CLK_APBCLK1, 16);
+	hws[WDT1_MUX] = ma35d1_clk_mux("wdt1_mux",
+				       clk_base + REG_CLK_CLKSEL3,
+				       24, 2, wdt1_sel_clks,
+				       ARRAY_SIZE(wdt1_sel_clks));
+	hws[WDT1_GATE] = ma35d1_clk_gate("wdt1_gate", "wdt1_mux",
+					 clk_base + REG_CLK_APBCLK1, 17);
+	hws[WDT2_MUX] = ma35d1_clk_mux("wdt2_mux",
+				       clk_base + REG_CLK_CLKSEL3,
+				       28, 2, wdt2_sel_clks,
+				       ARRAY_SIZE(wdt2_sel_clks));
+	hws[WDT2_GATE] = ma35d1_clk_gate("wdt2_gate", "wdt2_mux",
+				       clk_base + REG_CLK_APBCLK1, 18);
+
+	/* WWDT0~2 */
+	hws[WWDT0_MUX] = ma35d1_clk_mux("wwdt0_mux",
+					clk_base + REG_CLK_CLKSEL3,
+					22, 2, wwdt0_sel_clks,
+					ARRAY_SIZE(wwdt0_sel_clks));
+	hws[WWDT1_MUX] = ma35d1_clk_mux("wwdt1_mux",
+					clk_base + REG_CLK_CLKSEL3,
+					26, 2, wwdt1_sel_clks,
+					ARRAY_SIZE(wwdt1_sel_clks));
+	hws[WWDT2_MUX] = ma35d1_clk_mux("wwdt2_mux",
+					clk_base + REG_CLK_CLKSEL3,
+					30, 2, wwdt2_sel_clks,
+					ARRAY_SIZE(wwdt2_sel_clks));
+
+	/* EPWM0~2 */
+	hws[EPWM0_GATE] = ma35d1_clk_gate("epwm0_gate", "pclk1",
+					  clk_base + REG_CLK_APBCLK1, 24);
+	hws[EPWM1_GATE] = ma35d1_clk_gate("epwm1_gate", "pclk2",
+					  clk_base + REG_CLK_APBCLK1, 25);
+	hws[EPWM2_GATE] = ma35d1_clk_gate("epwm2_gate", "pclk1",
+					  clk_base + REG_CLK_APBCLK1, 26);
+
+	/* I2S0~1 */
+	hws[I2S0_MUX] = ma35d1_clk_mux("i2s0_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       12, 2, i2s0_sel_clks,
+				       ARRAY_SIZE(i2s0_sel_clks));
+	hws[I2S0_GATE] = ma35d1_clk_gate("i2s0_gate", "i2s0_mux",
+					 clk_base + REG_CLK_APBCLK2, 0);
+	hws[I2S1_MUX] = ma35d1_clk_mux("i2s1_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       14, 2, i2s1_sel_clks,
+				       ARRAY_SIZE(i2s1_sel_clks));
+	hws[I2S1_GATE] = ma35d1_clk_gate("i2s1_gate", "i2s1_mux",
+					 clk_base + REG_CLK_APBCLK2, 1);
+
+	/* SSMCC */
+	hws[SSMCC_GATE] = ma35d1_clk_gate("ssmcc_gate", "pclk3",
+					  clk_base + REG_CLK_APBCLK2, 2);
+
+	/* SSPCC */
+	hws[SSPCC_GATE] = ma35d1_clk_gate("sspcc_gate", "pclk3",
+					  clk_base + REG_CLK_APBCLK2, 3);
+
+	/* SPI0~3 */
+	hws[SPI0_MUX] = ma35d1_clk_mux("spi0_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       0, 2, spi0_sel_clks,
+				       ARRAY_SIZE(spi0_sel_clks));
+	hws[SPI0_GATE] = ma35d1_clk_gate("spi0_gate", "spi0_mux",
+					 clk_base + REG_CLK_APBCLK2, 4);
+	hws[SPI1_MUX] = ma35d1_clk_mux("spi1_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       2, 2, spi1_sel_clks,
+				       ARRAY_SIZE(spi1_sel_clks));
+	hws[SPI1_GATE] = ma35d1_clk_gate("spi1_gate", "spi1_mux",
+					 clk_base + REG_CLK_APBCLK2, 5);
+	hws[SPI2_MUX] = ma35d1_clk_mux("spi2_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       4, 2, spi2_sel_clks,
+				       ARRAY_SIZE(spi2_sel_clks));
+	hws[SPI2_GATE] = ma35d1_clk_gate("spi2_gate", "spi2_mux",
+					 clk_base + REG_CLK_APBCLK2, 6);
+	hws[SPI3_MUX] = ma35d1_clk_mux("spi3_mux",
+				       clk_base + REG_CLK_CLKSEL4,
+				       6, 2, spi3_sel_clks,
+				       ARRAY_SIZE(spi3_sel_clks));
+	hws[SPI3_GATE] = ma35d1_clk_gate("spi3_gate", "spi3_mux",
+					 clk_base + REG_CLK_APBCLK2, 7);
+
+	/* ECAP0~2 */
+	hws[ECAP0_GATE] = ma35d1_clk_gate("ecap0_gate", "pclk1",
+					  clk_base + REG_CLK_APBCLK2, 8);
+	hws[ECAP1_GATE] = ma35d1_clk_gate("ecap1_gate", "pclk2",
+					  clk_base + REG_CLK_APBCLK2, 9);
+	hws[ECAP2_GATE] = ma35d1_clk_gate("ecap2_gate", "pclk1",
+					  clk_base + REG_CLK_APBCLK2, 10);
+
+	/* QEI0~2 */
+	hws[QEI0_GATE] = ma35d1_clk_gate("qei0_gate", "pclk1",
+					 clk_base + REG_CLK_APBCLK2, 12);
+	hws[QEI1_GATE] = ma35d1_clk_gate("qei1_gate", "pclk2",
+					 clk_base + REG_CLK_APBCLK2, 13);
+	hws[QEI2_GATE] = ma35d1_clk_gate("qei2_gate", "pclk1",
+					 clk_base + REG_CLK_APBCLK2, 14);
+
+	/* ADC */
+	hws[ADC_DIV] = ma35d1_reg_adc_clkdiv(dev, "adc_div", "pclk0", 0,
+					     clk_base + REG_CLK_CLKDIV4,
+					     4, 17, 0x1ffff);
+	hws[ADC_GATE] = ma35d1_clk_gate("adc_gate", "adc_div",
+					clk_base + REG_CLK_APBCLK2, 24);
+
+	/* EADC */
+	hws[EADC_DIV] = ma35d1_clk_divider_table("eadc_div", "pclk2",
+						 clk_base + REG_CLK_CLKDIV4,
+						 0, 4, eadc_div_table);
+	hws[EADC_GATE] = ma35d1_clk_gate("eadc_gate", "eadc_div",
+					 clk_base + REG_CLK_APBCLK2, 25);
+
+	ret = of_clk_add_hw_provider(clk_node, of_clk_hw_onecell_get,
+				     ma35d1_hw_data);
+	if (ret < 0) {
+		dev_err(dev, "failed to register hws for MA35D1\n");
+		iounmap(clk_base);
+	}
+	return ret;
+}
+
+static const struct of_device_id ma35d1_clk_of_match[] = {
+	{ .compatible = "nuvoton,ma35d1-clk" },
+	{ },
+};
+MODULE_DEVICE_TABLE(of, ma35d1_clk_of_match);
+
+static struct platform_driver ma35d1_clk_driver = {
+	.probe = ma35d1_clocks_probe,
+	.driver = {
+		.name = "ma35d1-clk",
+		.of_match_table = ma35d1_clk_of_match,
+	},
+};
+
+static int __init ma35d1_clocks_init(void)
+{
+	return platform_driver_register(&ma35d1_clk_driver);
+}
+
+postcore_initcall(ma35d1_clocks_init);
+
+MODULE_AUTHOR("Chi-Fang Li<cfli0@nuvoton.com>");
+MODULE_DESCRIPTION("NUVOTON MA35D1 Clock Driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/clk/nuvoton/clk-ma35d1.h b/drivers/clk/nuvoton/clk-ma35d1.h
new file mode 100644
index 000000000000..faae5a17e425
--- /dev/null
+++ b/drivers/clk/nuvoton/clk-ma35d1.h
@@ -0,0 +1,198 @@ 
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2023 Nuvoton Technology Corp.
+ * Author: Chi-Fang Li <cfli0@nuvoton.com>
+ */
+
+#ifndef __DRV_CLK_NUVOTON_MA35D1_H
+#define __DRV_CLK_NUVOTON_MA35D1_H
+
+#include <linux/clk.h>
+#include <linux/clkdev.h>
+#include <linux/clk-provider.h>
+#include <linux/spinlock.h>
+#include <linux/regmap.h>
+#include <linux/mfd/syscon.h>
+#include <linux/mfd/ma35d1-sys.h>
+
+enum ma35d1_pll_type {
+	MA35D1_CAPLL,
+	MA35D1_DDRPLL,
+	MA35D1_APLL,
+	MA35D1_EPLL,
+	MA35D1_VPLL,
+};
+
+enum ma35d1_pll_mode {
+	VSIPLL_INTEGER_MODE,
+	VSIPLL_FRACTIONAL_MODE,
+	VSIPLL_SS_MODE,
+};
+
+/* VSI-PLL CTL0~2 */
+#define VSIPLL_CTL0			0x0
+#define VSIPLL_CTL1			0x4
+#define VSIPLL_CTL2			0x8
+
+/* VSI-PLL Specification limits */
+#define VSIPLL_FREF_MAX_FREQ		200000000UL
+#define VSIPLL_FREF_MIN_FREQ		1000000UL
+#define VSIPLL_FREFDIVM_MAX_FREQ	40000000UL
+#define VSIPLL_FREFDIVM_MIN_FREQ0	1000000UL
+#define VSIPLL_FREFDIVM_MIN_FREQ1	10000000UL
+#define VSIPLL_FCLK_MAX_FREQ		2400000000UL
+#define VSIPLL_FCLK_MIN_FREQ		600000000UL
+#define VSIPLL_FCLKO_MAX_FREQ		2400000000UL
+#define VSIPLL_FCLKO_MIN_FREQ		85700000UL
+#define VSIPLL_SPREAD_RANGE		194
+#define VSIPLL_MODULATION_FREQ		50000
+
+/* Clock Control Registers Offset */
+#define REG_CLK_PWRCTL			(0x00)
+#define REG_CLK_SYSCLK0			(0x04)
+#define REG_CLK_SYSCLK1			(0x08)
+#define REG_CLK_APBCLK0			(0x0C)
+#define REG_CLK_APBCLK1			(0x10)
+#define REG_CLK_APBCLK2			(0x14)
+#define REG_CLK_CLKSEL0			(0x18)
+#define REG_CLK_CLKSEL1			(0x1C)
+#define REG_CLK_CLKSEL2			(0x20)
+#define REG_CLK_CLKSEL3			(0x24)
+#define REG_CLK_CLKSEL4			(0x28)
+#define REG_CLK_CLKDIV0			(0x2C)
+#define REG_CLK_CLKDIV1			(0x30)
+#define REG_CLK_CLKDIV2			(0x34)
+#define REG_CLK_CLKDIV3			(0x38)
+#define REG_CLK_CLKDIV4			(0x3C)
+#define REG_CLK_CLKOCTL			(0x40)
+#define REG_CLK_STATUS			(0x50)
+#define REG_CLK_PLL0CTL0		(0x60)
+#define REG_CLK_PLL2CTL0		(0x80)
+#define REG_CLK_PLL2CTL1		(0x84)
+#define REG_CLK_PLL2CTL2		(0x88)
+#define REG_CLK_PLL3CTL0		(0x90)
+#define REG_CLK_PLL3CTL1		(0x94)
+#define REG_CLK_PLL3CTL2		(0x98)
+#define REG_CLK_PLL4CTL0		(0xA0)
+#define REG_CLK_PLL4CTL1		(0xA4)
+#define REG_CLK_PLL4CTL2		(0xA8)
+#define REG_CLK_PLL5CTL0		(0xB0)
+#define REG_CLK_PLL5CTL1		(0xB4)
+#define REG_CLK_PLL5CTL2		(0xB8)
+#define REG_CLK_CLKDCTL			(0xC0)
+#define REG_CLK_CLKDSTS			(0xC4)
+#define REG_CLK_CDUPB			(0xC8)
+#define REG_CLK_CDLOWB			(0xCC)
+#define REG_CLK_CKFLTRCTL		(0xD0)
+#define REG_CLK_TESTCLK			(0xF0)
+#define REG_CLK_PLLCTL			(0x40)
+
+/* Constant Definitions for Clock Controller */
+#define SMICPLLCTL0_FBDIV_POS		(0)
+#define SMICPLLCTL0_FBDIV_MSK		(0xfful << SMICPLLCTL0_FBDIV_POS)
+#define SMICPLLCTL0_INDIV_POS		(8)
+#define SMICPLLCTL0_INDIV_MSK		(0xful << SMICPLLCTL0_INDIV_POS)
+#define SMICPLLCTL0_OUTDIV_POS		(12)
+#define SMICPLLCTL0_OUTDIV_MSK		(0x3ul << SMICPLLCTL0_OUTDIV_POS)
+#define SMICPLLCTL0_PD_POS		(16)
+#define SMICPLLCTL0_PD_MSK		(0x1ul << SMICPLLCTL0_PD_POS)
+#define SMICPLLCTL0_BP_POS		(17)
+#define SMICPLLCTL0_BP_MSK		(0x1ul << SMICPLLCTL0_BP_POS)
+#define VSIPLLCTL0_FBDIV_POS		(0)
+#define VSIPLLCTL0_FBDIV_MSK		(0x7fful << VSIPLLCTL0_FBDIV_POS)
+#define VSIPLLCTL0_INDIV_POS		(12)
+#define VSIPLLCTL0_INDIV_MSK		(0x3ful << VSIPLLCTL0_INDIV_POS)
+#define VSIPLLCTL0_MODE_POS		(18)
+#define VSIPLLCTL0_MODE_MSK		(0x3ul << VSIPLLCTL0_MODE_POS)
+#define VSIPLLCTL0_SSRATE_POS		(20)
+#define VSIPLLCTL0_SSRATE_MSK		(0x7fful << VSIPLLCTL0_SSRATE_POS)
+#define VSIPLLCTL1_PD_POS		(0)
+#define VSIPLLCTL1_PD_MSK		(0x1ul << VSIPLLCTL1_PD_POS)
+#define VSIPLLCTL1_BP_POS		(1)
+#define VSIPLLCTL1_BP_MSK		(0x1ul << VSIPLLCTL1_BP_POS)
+#define VSIPLLCTL1_OUTDIV_POS		(4)
+#define VSIPLLCTL1_OUTDIV_MSK		(0x7ul << VSIPLLCTL1_OUTDIV_POS)
+#define VSIPLLCTL1_FRAC_POS		(8)
+#define VSIPLLCTL1_FRAC_MSK		(0xfffffful << VSIPLLCTL1_FRAC_POS)
+#define VSIPLLCTL2_SLOPE_POS		(0)
+#define VSIPLLCTL2_SLOPE_MSK		(0xfffffful << VSIPLLCTL2_SLOPE_POS)
+
+struct clk_hw *ma35d1_reg_clk_pll(enum ma35d1_pll_type type, u8 u8mode,
+				 const char *name, const char *parent,
+				 unsigned long targetFreq,
+				 void __iomem *base,
+				 struct regmap *regmap);
+
+struct clk_hw *ma35d1_reg_adc_clkdiv(struct device *dev,
+				    const char *name,
+				    const char *parent_name,
+				    unsigned long flags,
+				    void __iomem *reg, u8 shift,
+				    u8 width, u32 mask_bit);
+
+extern spinlock_t ma35d1_lock;
+
+static inline struct clk_hw *ma35d1_clk_fixed(const char *name, int rate)
+{
+	return clk_hw_register_fixed_rate(NULL, name, NULL, 0, rate);
+}
+
+static inline struct clk_hw *ma35d1_clk_mux(const char *name,
+					    void __iomem *reg, u8 shift,
+					    u8 width,
+					    const char *const *parents,
+					    int num_parents)
+{
+	return clk_hw_register_mux(NULL, name, parents, num_parents,
+				   CLK_SET_RATE_NO_REPARENT, reg, shift,
+				   width, 0, &ma35d1_lock);
+}
+
+static inline struct clk_hw *ma35d1_clk_divider(const char *name,
+						const char *parent,
+						void __iomem *reg, u8 shift,
+						u8 width)
+{
+	return clk_hw_register_divider(NULL, name, parent, CLK_SET_RATE_PARENT,
+				       reg, shift, width, 0, &ma35d1_lock);
+}
+
+static inline struct clk_hw *ma35d1_clk_divider_pow2(const char *name,
+						     const char *parent,
+						     void __iomem *reg,
+						     u8 shift, u8 width)
+{
+	return clk_hw_register_divider(NULL, name, parent,
+				       CLK_DIVIDER_POWER_OF_TWO, reg, shift,
+				       width, 0, &ma35d1_lock);
+}
+
+static inline struct clk_hw *ma35d1_clk_divider_table(const char *name,
+					const char *parent,
+					void __iomem *reg,
+					u8 shift, u8 width,
+					const struct clk_div_table *table)
+{
+	return clk_hw_register_divider_table(NULL, name, parent, 0,
+					     reg, shift, width, 0, table,
+					     &ma35d1_lock);
+}
+
+static inline struct clk_hw *ma35d1_clk_fixed_factor(const char *name,
+						     const char *parent,
+						     unsigned int mult,
+						     unsigned int div)
+{
+	return clk_hw_register_fixed_factor(NULL, name, parent,
+					    CLK_SET_RATE_PARENT, mult, div);
+}
+
+static inline struct clk_hw *ma35d1_clk_gate(const char *name,
+					     const char *parent,
+					     void __iomem *reg, u8 shift)
+{
+	return clk_hw_register_gate(NULL, name, parent, CLK_SET_RATE_PARENT,
+				    reg, shift, 0, &ma35d1_lock);
+}
+
+#endif /* __DRV_CLK_NUVOTON_MA35D1_H */