@@ -193,7 +193,6 @@ draw_border(struct wayland_output *output)
glUniform1i(shader->tex_uniforms[0], 0);
glUniform1f(shader->alpha_uniform, 1);
- glUniform1f(shader->texwidth_uniform, 1);
n = texture_border(output);
@@ -861,74 +861,441 @@ weston_surface_attach(struct wl_surface *surface, struct wl_buffer *buffer)
}
}
+
+#define max(a, b) (((a) > (b)) ? (a) : (b))
+#define min(a, b) (((a) > (b)) ? (b) : (a))
+#define clip(x, a, b) min(max(x, a), b)
+#define sign(x) ((x) >= 0)
+
static int
-texture_region(struct weston_surface *es, pixman_region32_t *region)
+calculate_edges(struct weston_surface *es, pixman_box32_t *rect,
+ pixman_box32_t *surf_rect, GLfloat *ex, GLfloat *ey)
+{
+ int i, n = 0;
+ GLfloat min_x, max_x, min_y, max_y;
+ GLfloat x[4] = {
+ surf_rect->x1, surf_rect->x2, surf_rect->x2, surf_rect->x1,
+ };
+ GLfloat y[4] = {
+ surf_rect->y1, surf_rect->y1, surf_rect->y2, surf_rect->y2,
+ };
+ GLfloat cx1 = rect->x1;
+ GLfloat cx2 = rect->x2;
+ GLfloat cy1 = rect->y1;
+ GLfloat cy2 = rect->y2;
+
+ GLfloat dist_squared(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2)
+ {
+ GLfloat dx = (x1 - x2);
+ GLfloat dy = (y1 - y2);
+ return dx * dx + dy * dy;
+ }
+
+ void append_vertex(GLfloat x, GLfloat y)
+ {
+ /* don't emit duplicate vertices: */
+ if ((n > 0) && (ex[n-1] == x) && (ey[n-1] == y))
+ return;
+ ex[n] = x;
+ ey[n] = y;
+ n++;
+ }
+
+ /* transform surface to screen space: */
+ for (i = 0; i < 4; i++)
+ weston_surface_to_global_float(es, x[i], y[i], &x[i], &y[i]);
+
+ /* find bounding box: */
+ min_x = max_x = x[0];
+ min_y = max_y = y[0];
+
+ for (i = 1; i < 4; i++) {
+ min_x = min(min_x, x[i]);
+ max_x = max(max_x, x[i]);
+ min_y = min(min_y, y[i]);
+ max_y = max(max_y, y[i]);
+ }
+
+ /* First, simple bounding box check to discard early transformed
+ * surface rects that do not intersect with the clip region:
+ */
+ if ((min_x > cx2) || (max_x < cx1) ||
+ (min_y > cy2) || (max_y < cy1))
+ return 0;
+
+ /* Simple case, bounding box edges are parallel to surface edges,
+ * there will be only four edges. We just need to clip the surface
+ * vertices to the clip rect bounds:
+ */
+ if (!es->transform.enabled) {
+ for (i = 0; i < 4; i++) {
+ ex[n] = clip(x[i], cx1, cx2);
+ ey[n] = clip(y[i], cy1, cy2);
+ n++;
+ }
+ return 4;
+ }
+
+ /* Hard case, transformation applied. We need to find the vertices
+ * of the shape that is the intersection of the clip rect and
+ * transformed surface. This can be anything from 3 to 8 sides.
+ *
+ * Observation: all the resulting vertices will be the intersection
+ * points of the transformed surface and the clip rect, plus the
+ * vertices of the clip rect which are enclosed by the transformed
+ * surface and the vertices of the transformed surface which are
+ * enclosed by the clip rect.
+ *
+ * Observation: there will be zero, one, or two resulting vertices
+ * for each edge of the src rect.
+ *
+ * Loop over four edges of the transformed rect:
+ */
+ for (i = 0; i < 4; i++) {
+ GLfloat x1, y1, x2, y2;
+ int last_n = n;
+
+ x1 = x[i];
+ y1 = y[i];
+
+ /* if this vertex is contained in the clip rect, use it as-is: */
+ if ((cx1 <= x1) && (x1 <= cx2) &&
+ (cy1 <= y1) && (y1 <= cy2))
+ append_vertex(x1, y1);
+
+ /* for remaining, we consider the point as part of a line: */
+ x2 = x[(i+1) % 4];
+ y2 = y[(i+1) % 4];
+
+ if (x1 == x2) {
+ append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
+ append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
+ } else if (y1 == y2) {
+ append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
+ append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
+ } else {
+ GLfloat m, c, p;
+ GLfloat tx[2], ty[2];
+ int tn = 0;
+
+ int intersect_horiz(GLfloat y, GLfloat *p)
+ {
+ GLfloat x;
+
+ /* if y does not lie between y1 and y2, no
+ * intersection possible
+ */
+ if (sign(y-y1) == sign(y-y2))
+ return 0;
+
+ x = (y - c) / m;
+
+ /* if x does not lie between cx1 and cx2, no
+ * intersection:
+ */
+ if (sign(x-cx1) == sign(x-cx2))
+ return 0;
+
+ *p = x;
+ return 1;
+ }
+
+ int intersect_vert(GLfloat x, GLfloat *p)
+ {
+ GLfloat y;
+
+ if (sign(x-x1) == sign(x-x2))
+ return 0;
+
+ y = m * x + c;
+
+ if (sign(y-cy1) == sign(y-cy2))
+ return 0;
+
+ *p = y;
+ return 1;
+ }
+
+ /* y = mx + c */
+ m = (y2 - y1) / (x2 - x1);
+ c = y1 - m * x1;
+
+ /* check for up to two intersections with the four edges
+ * of the clip rect. Note that we don't know the orientation
+ * of the transformed surface wrt. the clip rect. So if when
+ * there are two intersection points, we need to put the one
+ * closest to x1,y1 first:
+ */
+
+ /* check top clip rect edge: */
+ if (intersect_horiz(cy1, &p)) {
+ ty[tn] = cy1;
+ tx[tn] = p;
+ tn++;
+ }
+
+ /* check right clip rect edge: */
+ if (intersect_vert(cx2, &p)) {
+ ty[tn] = p;
+ tx[tn] = cx2;
+ tn++;
+ if (tn == 2)
+ goto edge_check_done;
+ }
+
+ /* check bottom clip rect edge: */
+ if (intersect_horiz(cy2, &p)) {
+ ty[tn] = cy2;
+ tx[tn] = p;
+ tn++;
+ if (tn == 2)
+ goto edge_check_done;
+ }
+
+ /* check left clip rect edge: */
+ if (intersect_vert(cx1, &p)) {
+ ty[tn] = p;
+ tx[tn] = cx1;
+ tn++;
+ }
+
+edge_check_done:
+ if (tn == 1) {
+ append_vertex(tx[0], ty[0]);
+ } else if (tn == 2) {
+ if (dist_squared(x1, y1, tx[0], ty[0]) <
+ dist_squared(x1, y1, tx[1], ty[1])) {
+ append_vertex(tx[0], ty[0]);
+ append_vertex(tx[1], ty[1]);
+ } else {
+ append_vertex(tx[1], ty[1]);
+ append_vertex(tx[0], ty[0]);
+ }
+ }
+
+ if (n == last_n) {
+ GLfloat best_x=0, best_y=0;
+ uint32_t d, best_d = (unsigned int)-1; /* distance squared */
+ uint32_t max_d = dist_squared(x2, y2,
+ x[(i+2) % 4], y[(i+2) % 4]);
+
+ /* if there are no vertices on this line, it could be that
+ * there is a vertex of the clip rect that is enclosed by
+ * the transformed surface. Find the vertex of the clip
+ * rect that is reached by the shortest line perpendicular
+ * to the current edge, if any.
+ *
+ * slope of perpendicular is 1/m, so
+ *
+ * cy = -cx/m + c2
+ * c2 = cy + cx/m
+ *
+ */
+
+ int perp_intersect(GLfloat cx, GLfloat cy, uint32_t *d)
+ {
+ GLfloat c2 = cy + cx/m;
+ GLfloat x = (c2 - c) / (m + 1/m);
+
+ /* if the x position of the intersection of the
+ * perpendicular with the transformed edge does
+ * not lie within the bounds of the edge, then
+ * no intersection:
+ */
+ if (sign(x-x1) == sign(x-x2))
+ return 0;
+
+ *d = dist_squared(cx, cy, x, (m * x) + c);
+
+ /* if intersection distance is further away than
+ * opposite edge of surface region, it is invalid:
+ */
+ if (*d > max_d)
+ return 0;
+
+ return 1;
+ }
+
+ if (perp_intersect(cx1, cy1, &d)) {
+ best_x = cx1;
+ best_y = cy1;
+ best_d = d;
+ }
+
+ if (perp_intersect(cx1, cy2, &d) && (d < best_d)) {
+ best_x = cx1;
+ best_y = cy2;
+ best_d = d;
+ }
+
+ if (perp_intersect(cx2, cy2, &d) && (d < best_d)) {
+ best_x = cx2;
+ best_y = cy2;
+ best_d = d;
+ }
+
+ if (perp_intersect(cx2, cy1, &d) && (d < best_d)) {
+ best_x = cx2;
+ best_y = cy1;
+ best_d = d;
+ }
+
+ if (best_d != (unsigned int)-1) // XXX can this happen?
+ append_vertex(best_x, best_y);
+ }
+ }
+
+ }
+
+ return n;
+}
+
+static int
+texture_region(struct weston_surface *es, pixman_region32_t *region,
+ pixman_region32_t *surf_region)
{
struct weston_compositor *ec = es->compositor;
GLfloat *v, inv_width, inv_height;
- GLfloat sx, sy;
- pixman_box32_t *rectangles;
- unsigned int *p;
- int i, n;
+ unsigned int *vtxcnt, nvtx = 0;
+ pixman_box32_t *rects, *surf_rects;
+ int i, j, k, nrects, nsurf;
+
+ rects = pixman_region32_rectangles(region, &nrects);
+ surf_rects = pixman_region32_rectangles(surf_region, &nsurf);
+
+ /* worst case we can have 10 vertices per rect (ie. clipped into
+ * an octagon):
+ */
+ v = wl_array_add(&ec->vertices, nrects * nsurf * 10 * 4 * sizeof *v);
+ vtxcnt = wl_array_add(&ec->vtxcnt, nrects * nsurf * sizeof *vtxcnt);
- rectangles = pixman_region32_rectangles(region, &n);
- v = wl_array_add(&ec->vertices, n * 16 * sizeof *v);
- p = wl_array_add(&ec->indices, n * 6 * sizeof *p);
inv_width = 1.0 / es->pitch;
inv_height = 1.0 / es->geometry.height;
- for (i = 0; i < n; i++, v += 16, p += 6) {
- surface_from_global_float(es, rectangles[i].x1,
- rectangles[i].y1, &sx, &sy);
- v[ 0] = rectangles[i].x1;
- v[ 1] = rectangles[i].y1;
- v[ 2] = sx * inv_width;
- v[ 3] = sy * inv_height;
-
- surface_from_global_float(es, rectangles[i].x1,
- rectangles[i].y2, &sx, &sy);
- v[ 4] = rectangles[i].x1;
- v[ 5] = rectangles[i].y2;
- v[ 6] = sx * inv_width;
- v[ 7] = sy * inv_height;
-
- surface_from_global_float(es, rectangles[i].x2,
- rectangles[i].y1, &sx, &sy);
- v[ 8] = rectangles[i].x2;
- v[ 9] = rectangles[i].y1;
- v[10] = sx * inv_width;
- v[11] = sy * inv_height;
-
- surface_from_global_float(es, rectangles[i].x2,
- rectangles[i].y2, &sx, &sy);
- v[12] = rectangles[i].x2;
- v[13] = rectangles[i].y2;
- v[14] = sx * inv_width;
- v[15] = sy * inv_height;
-
- p[0] = i * 4 + 0;
- p[1] = i * 4 + 1;
- p[2] = i * 4 + 2;
- p[3] = i * 4 + 2;
- p[4] = i * 4 + 1;
- p[5] = i * 4 + 3;
+ for (i = 0; i < nrects; i++) {
+ pixman_box32_t *rect = &rects[i];
+ for (j = 0; j < nsurf; j++) {
+ pixman_box32_t *surf_rect = &surf_rects[j];
+ GLfloat cx, cy;
+ GLfloat ex[8], ey[8]; /* edge points in screen space */
+ int n;
+
+ void emit_vertex(GLfloat gx, GLfloat gy)
+ {
+ GLfloat sx, sy;
+ surface_from_global_float(es, gx, gy, &sx, &sy);
+ /* In groups of 4 attributes, first two are 'position', 2nd two
+ * are 'texcoord'.
+ */
+ *(v++) = gx;
+ *(v++) = gy;
+ *(v++) = sx * inv_width;
+ *(v++) = sy * inv_height;
+ }
+
+ /* The transformed surface, after clipping to the clip region,
+ * can have as many as eight sides, emitted as a triangle-fan.
+ * The first vertex is the center, followed by each corner.
+ *
+ * If a corner of the transformed surface falls outside of the
+ * clip region, instead of emitting one vertex for the corner
+ * of the surface, up to two are emitted for two corresponding
+ * intersection point(s) between the surface and the clip region.
+ *
+ * To do this, we first calculate the (up to eight) points that
+ * form the intersection of the clip rect and the transformed
+ * surface. After that we calculate the average to determine
+ * the center point, and emit the center and edge vertices of
+ * the fan.
+ */
+ n = calculate_edges(es, rect, surf_rect, ex, ey);
+ if (n < 3)
+ continue;
+
+ /* calculate/emit center point: */
+ cx = 0;
+ cy = 0;
+ for (k = 0; k < n; k++) {
+ cx += ex[k];
+ cy += ey[k];
+ }
+ cx /= n;
+ cy /= n;
+ emit_vertex(cx, cy);
+
+ /* then emit edge points: */
+ for (k = 0; k < n; k++)
+ emit_vertex(ex[k], ey[k]);
+
+ /* and close the fan: */
+ emit_vertex(ex[0], ey[0]);
+
+ vtxcnt[nvtx++] = n + 2;
+ }
}
- return n;
+ return nvtx;
}
+static void
+repaint_region(struct weston_surface *es, pixman_region32_t *region,
+ pixman_region32_t *surf_region)
+{
+ struct weston_compositor *ec = es->compositor;
+ GLfloat *v;
+ unsigned int *vtxcnt;
+ int i, first, nfans;
+
+ /* The final region to be painted is the intersection of
+ * 'region' and 'surf_region'. However, 'region' is in the global
+ * coordinates, and 'surf_region' is in the surface-local
+ * corodinates. texture_region() will iterate over all pairs of
+ * rectangles from both regions, compute the intersection
+ * polygon for each pair, and store it as a triangle fan if
+ * it has a non-zero area.
+ */
+ nfans = texture_region(es, region, surf_region);
+
+ v = ec->vertices.data;
+ vtxcnt = ec->vtxcnt.data;
+
+ /* position: */
+ glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]);
+ glEnableVertexAttribArray(0);
+
+ /* texcoord: */
+ glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]);
+ glEnableVertexAttribArray(1);
+
+ for (i = 0, first = 0; i < nfans; i++) {
+ glDrawArrays(GL_TRIANGLE_FAN, first, vtxcnt[i]);
+ first += vtxcnt[i];
+ }
+
+ glDisableVertexAttribArray(1);
+ glDisableVertexAttribArray(0);
+
+ ec->vertices.size = 0;
+ ec->vtxcnt.size = 0;
+}
+
+
WL_EXPORT void
weston_surface_draw(struct weston_surface *es, struct weston_output *output,
pixman_region32_t *damage)
{
- GLfloat surface_rect[4] = { 0.0, 1.0, 0.0, 1.0 };
struct weston_compositor *ec = es->compositor;
- GLfloat *v;
+ /* repaint bounding region in global coordinates: */
pixman_region32_t repaint;
+ /* regions of surface to draw opaque/blended in surface coordinates: */
+ pixman_region32_t surface_opaque, surface_blend;
GLint filter;
- int i, n;
+ int i;
pixman_region32_init(&repaint);
+ pixman_region32_init(&surface_opaque);
+ pixman_region32_init(&surface_blend);
+
pixman_region32_intersect(&repaint,
&es->transform.boundingbox, damage);
pixman_region32_subtract(&repaint, &repaint, &es->clip);
@@ -940,10 +1307,20 @@ weston_surface_draw(struct weston_surface *es, struct weston_output *output,
&ec->primary_plane.damage, &repaint);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
- if (es->blend || es->alpha < 1.0)
- glEnable(GL_BLEND);
- else
- glDisable(GL_BLEND);
+ if (es->blend || es->alpha < 1.0) {
+ /* blended region is whole surface minus opaque region: */
+ pixman_region32_init_rect(&surface_blend, 0, 0,
+ es->geometry.width, es->geometry.height);
+ pixman_region32_init(&surface_opaque);
+ pixman_region32_copy(&surface_opaque, &es->opaque);
+ pixman_region32_subtract(&surface_blend, &surface_blend,
+ &surface_opaque);
+ } else {
+ /* whole surface is opaque: */
+ pixman_region32_init_rect(&surface_opaque, 0, 0,
+ es->geometry.width, es->geometry.height);
+ pixman_region32_init(&surface_blend);
+ }
if (ec->current_shader != es->shader) {
glUseProgram(es->shader->program);
@@ -954,20 +1331,12 @@ weston_surface_draw(struct weston_surface *es, struct weston_output *output,
1, GL_FALSE, output->matrix.d);
glUniform4fv(es->shader->color_uniform, 1, es->color);
glUniform1f(es->shader->alpha_uniform, es->alpha);
- glUniform1f(es->shader->texwidth_uniform,
- (GLfloat)es->geometry.width / es->pitch);
- if (es->blend)
- glUniform4fv(es->shader->opaque_uniform, 1, es->opaque_rect);
- else
- glUniform4fv(es->shader->opaque_uniform, 1, surface_rect);
if (es->transform.enabled || output->zoom.active)
filter = GL_LINEAR;
else
filter = GL_NEAREST;
- n = texture_region(es, &repaint);
-
for (i = 0; i < es->num_textures; i++) {
glUniform1i(es->shader->tex_uniforms[i], i);
glActiveTexture(GL_TEXTURE0 + i);
@@ -976,22 +1345,20 @@ weston_surface_draw(struct weston_surface *es, struct weston_output *output,
glTexParameteri(es->target, GL_TEXTURE_MAG_FILTER, filter);
}
- v = ec->vertices.data;
- glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]);
- glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]);
- glEnableVertexAttribArray(0);
- glEnableVertexAttribArray(1);
-
- glDrawElements(GL_TRIANGLES, n * 6, GL_UNSIGNED_INT, ec->indices.data);
-
- glDisableVertexAttribArray(1);
- glDisableVertexAttribArray(0);
+ if (pixman_region32_not_empty(&surface_opaque)) {
+ glDisable(GL_BLEND);
+ repaint_region(es, &repaint, &surface_opaque);
+ }
- ec->vertices.size = 0;
- ec->indices.size = 0;
+ if (pixman_region32_not_empty(&surface_blend)) {
+ glEnable(GL_BLEND);
+ repaint_region(es, &repaint, &surface_blend);
+ }
out:
pixman_region32_fini(&repaint);
+ pixman_region32_fini(&surface_opaque);
+ pixman_region32_fini(&surface_blend);
}
WL_EXPORT void
@@ -2818,39 +3185,23 @@ static const char vertex_shader[] =
"}\n";
/* Declare common fragment shader uniforms */
-#define FRAGMENT_SHADER_UNIFORMS \
- "uniform float alpha;\n" \
- "uniform float texwidth;\n" \
- "uniform vec4 opaque;\n"
-
-/* Common fragment shader init code (check texture bounds) */
-#define FRAGMENT_SHADER_INIT \
- " if (v_texcoord.x < 0.0 || v_texcoord.x > texwidth ||\n" \
- " v_texcoord.y < 0.0 || v_texcoord.y > 1.0)\n" \
- " discard;\n"
-
-#define FRAGMENT_SHADER_EXIT \
- " if (opaque.x <= v_texcoord.x && v_texcoord.x < opaque.y &&\n" \
- " opaque.z <= v_texcoord.y && v_texcoord.y < opaque.w)\n" \
- " gl_FragColor.a = 1.0;\n" \
- " gl_FragColor = alpha * gl_FragColor;\n"
-
#define FRAGMENT_CONVERT_YUV \
+ " y *= alpha;\n" \
+ " u *= alpha;\n" \
+ " v *= alpha;\n" \
" gl_FragColor.r = y + 1.59602678 * v;\n" \
" gl_FragColor.g = y - 0.39176229 * u - 0.81296764 * v;\n" \
" gl_FragColor.b = y + 2.01723214 * u;\n" \
- " gl_FragColor.a = 1.0;\n"
+ " gl_FragColor.a = alpha;\n"
static const char texture_fragment_shader_rgba[] =
"precision mediump float;\n"
"varying vec2 v_texcoord;\n"
"uniform sampler2D tex;\n"
- FRAGMENT_SHADER_UNIFORMS
+ "uniform float alpha;\n"
"void main()\n"
"{\n"
- FRAGMENT_SHADER_INIT
- " gl_FragColor = texture2D(tex, v_texcoord)\n;"
- FRAGMENT_SHADER_EXIT
+ " gl_FragColor = alpha * texture2D(tex, v_texcoord)\n;"
"}\n";
static const char texture_fragment_shader_egl_external[] =
@@ -2858,12 +3209,10 @@ static const char texture_fragment_shader_egl_external[] =
"precision mediump float;\n"
"varying vec2 v_texcoord;\n"
"uniform samplerExternalOES tex;\n"
- FRAGMENT_SHADER_UNIFORMS
+ "uniform float alpha;\n"
"void main()\n"
"{\n"
- FRAGMENT_SHADER_INIT
- " gl_FragColor = texture2D(tex, v_texcoord)\n;"
- FRAGMENT_SHADER_EXIT
+ " gl_FragColor = alpha * texture2D(tex, v_texcoord)\n;"
"}\n";
static const char texture_fragment_shader_y_uv[] =
@@ -2871,14 +3220,12 @@ static const char texture_fragment_shader_y_uv[] =
"uniform sampler2D tex;\n"
"uniform sampler2D tex1;\n"
"varying vec2 v_texcoord;\n"
- FRAGMENT_SHADER_UNIFORMS
+ "uniform float alpha;\n"
"void main() {\n"
- FRAGMENT_SHADER_INIT
" float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n"
" float u = texture2D(tex1, v_texcoord).r - 0.5;\n"
" float v = texture2D(tex1, v_texcoord).g - 0.5;\n"
FRAGMENT_CONVERT_YUV
- FRAGMENT_SHADER_EXIT
"}\n";
static const char texture_fragment_shader_y_u_v[] =
@@ -2887,14 +3234,12 @@ static const char texture_fragment_shader_y_u_v[] =
"uniform sampler2D tex1;\n"
"uniform sampler2D tex2;\n"
"varying vec2 v_texcoord;\n"
- FRAGMENT_SHADER_UNIFORMS
+ "uniform float alpha;\n"
"void main() {\n"
- FRAGMENT_SHADER_INIT
" float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n"
" float u = texture2D(tex1, v_texcoord).x - 0.5;\n"
" float v = texture2D(tex2, v_texcoord).x - 0.5;\n"
FRAGMENT_CONVERT_YUV
- FRAGMENT_SHADER_EXIT
"}\n";
static const char texture_fragment_shader_y_xuxv[] =
@@ -2902,14 +3247,12 @@ static const char texture_fragment_shader_y_xuxv[] =
"uniform sampler2D tex;\n"
"uniform sampler2D tex1;\n"
"varying vec2 v_texcoord;\n"
- FRAGMENT_SHADER_UNIFORMS
+ "uniform float alpha;\n"
"void main() {\n"
- FRAGMENT_SHADER_INIT
" float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n"
" float u = texture2D(tex1, v_texcoord).g - 0.5;\n"
" float v = texture2D(tex1, v_texcoord).a - 0.5;\n"
FRAGMENT_CONVERT_YUV
- FRAGMENT_SHADER_EXIT
"}\n";
static const char solid_fragment_shader[] =
@@ -2973,8 +3316,6 @@ weston_shader_init(struct weston_shader *shader,
shader->tex_uniforms[2] = glGetUniformLocation(shader->program, "tex2");
shader->alpha_uniform = glGetUniformLocation(shader->program, "alpha");
shader->color_uniform = glGetUniformLocation(shader->program, "color");
- shader->texwidth_uniform = glGetUniformLocation(shader->program, "texwidth");
- shader->opaque_uniform = glGetUniformLocation(shader->program, "opaque");
return 0;
}
@@ -3323,6 +3664,7 @@ weston_compositor_shutdown(struct weston_compositor *ec)
wl_array_release(&ec->vertices);
wl_array_release(&ec->indices);
+ wl_array_release(&ec->vtxcnt);
wl_event_loop_destroy(ec->input_loop);
}
@@ -247,8 +247,6 @@ struct weston_shader {
GLint tex_uniforms[3];
GLint alpha_uniform;
GLint color_uniform;
- GLint texwidth_uniform;
- GLint opaque_uniform;
};
enum {
@@ -318,7 +316,9 @@ struct weston_compositor {
int idle_time; /* effective timeout, s */
/* Repaint state. */
- struct wl_array vertices, indices;
+ struct wl_array vertices;
+ struct wl_array indices; /* only used in compositor-wayland */
+ struct wl_array vtxcnt;
struct weston_plane primary_plane;
uint32_t focus;