@@ -1409,17 +1409,18 @@ FLOAT_TO_INT(64, 64)
#undef FLOAT_TO_INT
-/*----------------------------------------------------------------------------
-| Returns the result of converting the floating-point value
-| `a' to the unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| unsigned integer is returned. Otherwise, if the conversion overflows, the
-| largest unsigned integer is returned. If the 'a' is negative, the result
-| is rounded and zero is returned; values that do not round to zero will
-| raise the inexact exception flag.
-*----------------------------------------------------------------------------*/
+/*
+ * Returns the result of converting the floating-point value `a' to
+ * the unsigned integer format. The conversion is performed according
+ * to the IEC/IEEE Standard for Binary Floating-Point
+ * Arithmetic---which means in particular that the conversion is
+ * rounded according to the current rounding mode. If `a' is a NaN,
+ * the largest unsigned integer is returned. Otherwise, if the
+ * conversion overflows, the largest unsigned integer is returned. If
+ * the 'a' is negative, the result is rounded and zero is returned;
+ * values that do not round to zero will raise the inexact exception
+ * flag.
+ */
static uint64_t uint64_pack_decomposed(decomposed_parts p, float_status *s)
{
@@ -1433,6 +1434,7 @@ static uint64_t uint64_pack_decomposed(decomposed_parts p, float_status *s)
return 0;
case float_class_normal:
if (p.sign) {
+ s->float_exception_flags |= float_flag_invalid;
return 0;
}
if (p.exp < DECOMPOSED_BINARY_POINT) {
@@ -1440,6 +1442,7 @@ static uint64_t uint64_pack_decomposed(decomposed_parts p, float_status *s)
} else if (p.exp < 64) {
return p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
} else {
+ s->float_exception_flags |= float_flag_invalid;
return UINT64_MAX;
}
default:
@@ -1450,13 +1453,21 @@ static uint64_t uint64_pack_decomposed(decomposed_parts p, float_status *s)
static uint16_t uint16_pack_decomposed(decomposed_parts p, float_status *s)
{
uint64_t r = uint64_pack_decomposed(p, s);
- return r > UINT16_MAX ? UINT16_MAX : r;
+ if (r > UINT16_MAX) {
+ s->float_exception_flags |= float_flag_invalid;
+ r = UINT16_MAX;
+ }
+ return r;
}
static uint32_t uint32_pack_decomposed(decomposed_parts p, float_status *s)
{
uint64_t r = uint64_pack_decomposed(p, s);
- return r > UINT32_MAX ? UINT32_MAX : r;
+ if (r > UINT32_MAX) {
+ s->float_exception_flags |= float_flag_invalid;
+ r = UINT32_MAX;
+ }
+ return r;
}
#define FLOAT_TO_UINT(fsz, isz) \
@@ -1489,6 +1500,168 @@ FLOAT_TO_UINT(64, 64)
#undef FLOAT_TO_UINT
+/*
+ * Integer to float conversions
+ *
+ * Returns the result of converting the two's complement integer `a'
+ * to the floating-point format. The conversion is performed according
+ * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+ */
+
+static decomposed_parts int_to_float(int64_t a, float_status *status)
+{
+ decomposed_parts r;
+ if (a == 0) {
+ r.cls = float_class_zero;
+ } else if (a == (1ULL << 63)) {
+ r.cls = float_class_normal;
+ r.sign = true;
+ r.frac = DECOMPOSED_IMPLICIT_BIT;
+ r.exp = 63;
+ } else {
+ uint64_t f;
+ if (a < 0) {
+ f = -a;
+ r.sign = true;
+ } else {
+ f = a;
+ r.sign = false;
+ }
+ int shift = clz64(f) - 1;
+ r.cls = float_class_normal;
+ r.exp = (DECOMPOSED_BINARY_POINT - shift);
+ r.frac = f << shift;
+ }
+
+ return r;
+}
+
+float16 int64_to_float16(int64_t a, float_status *status)
+{
+ decomposed_parts pa = int_to_float(a, status);
+ return float16_round_pack_canonical(pa, status);
+}
+
+float16 int32_to_float16(int32_t a, float_status *status)
+{
+ return int64_to_float16((int64_t) a, status);
+}
+
+float16 int16_to_float16(int16_t a, float_status *status)
+{
+ return int64_to_float16((int64_t) a, status);
+}
+
+float32 int64_to_float32(int64_t a, float_status *status)
+{
+ decomposed_parts pa = int_to_float(a, status);
+ return float32_round_pack_canonical(pa, status);
+}
+
+float32 int32_to_float32(int32_t a, float_status *status)
+{
+ return int64_to_float32((int64_t) a, status);
+}
+
+float32 int16_to_float32(int16_t a, float_status *status)
+{
+ return int64_to_float32((int64_t) a, status);
+}
+
+float64 int64_to_float64(int64_t a, float_status *status)
+{
+ decomposed_parts pa = int_to_float(a, status);
+ return float64_round_pack_canonical(pa, status);
+}
+
+float64 int32_to_float64(int32_t a, float_status *status)
+{
+ return int64_to_float64((int64_t) a, status);
+}
+
+float64 int16_to_float64(int16_t a, float_status *status)
+{
+ return int64_to_float64((int64_t) a, status);
+}
+
+
+/*
+ * Unsigned Integer to float conversions
+ *
+ * Returns the result of converting the unsigned integer `a' to the
+ * floating-point format. The conversion is performed according to the
+ * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+ */
+
+static decomposed_parts uint_to_float(uint64_t a, float_status *status)
+{
+ decomposed_parts r;
+ if (a == 0) {
+ r.cls = float_class_zero;
+ } else {
+ int spare_bits = clz64(a) - 1;
+ r.sign = false;
+ r.cls = float_class_normal;
+ r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
+ if (spare_bits < 0) {
+ shift64RightJamming(a, -spare_bits, &a);
+ r.frac = a;
+ } else {
+ r.frac = a << spare_bits;
+ }
+ }
+
+ return r;
+}
+
+float16 uint64_to_float16(uint64_t a, float_status *status)
+{
+ decomposed_parts pa = uint_to_float(a, status);
+ return float16_round_pack_canonical(pa, status);
+}
+
+float16 uint32_to_float16(uint32_t a, float_status *status)
+{
+ return uint64_to_float16((uint64_t) a, status);
+}
+
+float16 uint16_to_float16(uint16_t a, float_status *status)
+{
+ return uint64_to_float16((uint64_t) a, status);
+}
+
+float32 uint64_to_float32(uint64_t a, float_status *status)
+{
+ decomposed_parts pa = uint_to_float(a, status);
+ return float32_round_pack_canonical(pa, status);
+}
+
+float32 uint32_to_float32(uint32_t a, float_status *status)
+{
+ return uint64_to_float32((uint64_t) a, status);
+}
+
+float32 uint16_to_float32(uint16_t a, float_status *status)
+{
+ return uint64_to_float32((uint64_t) a, status);
+}
+
+float64 uint64_to_float64(uint64_t a, float_status *status)
+{
+ decomposed_parts pa = uint_to_float(a, status);
+ return float64_round_pack_canonical(pa, status);
+}
+
+float64 uint32_to_float64(uint32_t a, float_status *status)
+{
+ return uint64_to_float64((uint64_t) a, status);
+}
+
+float64 uint16_to_float64(uint16_t a, float_status *status)
+{
+ return uint64_to_float64((uint64_t) a, status);
+}
+
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
@@ -2580,43 +2753,6 @@ static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int32_to_float32(int32_t a, float_status *status)
-{
- flag zSign;
-
- if ( a == 0 ) return float32_zero;
- if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int32_to_float64(int32_t a, float_status *status)
-{
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig;
-
- if ( a == 0 ) return float64_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 21;
- zSig = absA;
- return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
-
-}
/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
@@ -2663,56 +2799,6 @@ float128 int32_to_float128(int32_t a, float_status *status)
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int64_to_float32(int64_t a, float_status *status)
-{
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
-
- if ( a == 0 ) return float32_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) {
- return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
- }
- else {
- shiftCount += 7;
- if ( shiftCount < 0 ) {
- shift64RightJamming( absA, - shiftCount, &absA );
- }
- else {
- absA <<= shiftCount;
- }
- return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int64_to_float64(int64_t a, float_status *status)
-{
- flag zSign;
-
- if ( a == 0 ) return float64_zero;
- if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
- return packFloat64( 1, 0x43E, 0 );
- }
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
-}
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format. The conversion
@@ -2767,65 +2853,6 @@ float128 int64_to_float128(int64_t a, float_status *status)
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit unsigned integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 uint64_to_float32(uint64_t a, float_status *status)
-{
- int shiftcount;
-
- if (a == 0) {
- return float32_zero;
- }
-
- /* Determine (left) shift needed to put first set bit into bit posn 23
- * (since packFloat32() expects the binary point between bits 23 and 22);
- * this is the fast case for smallish numbers.
- */
- shiftcount = countLeadingZeros64(a) - 40;
- if (shiftcount >= 0) {
- return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
- }
- /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
- * expects the binary point between bits 30 and 29, hence the + 7.
- */
- shiftcount += 7;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
-
- return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit unsigned integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 uint64_to_float64(uint64_t a, float_status *status)
-{
- int exp = 0x43C;
- int shiftcount;
-
- if (a == 0) {
- return float64_zero;
- }
-
- shiftcount = countLeadingZeros64(a) - 1;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
- return roundAndPackFloat64(0, exp - shiftcount, a, status);
-}
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format. The conversion is performed
@@ -6705,19 +6732,6 @@ int float128_unordered_quiet(float128 a, float128 b, float_status *status)
return 0;
}
-/* misc functions */
-float32 uint32_to_float32(uint32_t a, float_status *status)
-{
- return int64_to_float32(a, status);
-}
-
-float64 uint32_to_float64(uint32_t a, float_status *status)
-{
- return int64_to_float64(a, status);
-}
-
-
-
#define COMPARE(s, nan_exp) \
static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
int is_quiet, float_status *status) \
@@ -299,9 +299,13 @@ enum {
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
+float32 int16_to_float32(int16_t, float_status *status);
float32 int32_to_float32(int32_t, float_status *status);
+float64 int16_to_float64(int16_t, float_status *status);
float64 int32_to_float64(int32_t, float_status *status);
+float32 uint16_to_float32(uint16_t, float_status *status);
float32 uint32_to_float32(uint32_t, float_status *status);
+float64 uint16_to_float64(uint16_t, float_status *status);
float64 uint32_to_float64(uint32_t, float_status *status);
floatx80 int32_to_floatx80(int32_t, float_status *status);
float128 int32_to_float128(int32_t, float_status *status);
@@ -313,27 +317,6 @@ float32 uint64_to_float32(uint64_t, float_status *status);
float64 uint64_to_float64(uint64_t, float_status *status);
float128 uint64_to_float128(uint64_t, float_status *status);
-/* We provide the int16 versions for symmetry of API with float-to-int */
-static inline float32 int16_to_float32(int16_t v, float_status *status)
-{
- return int32_to_float32(v, status);
-}
-
-static inline float32 uint16_to_float32(uint16_t v, float_status *status)
-{
- return uint32_to_float32(v, status);
-}
-
-static inline float64 int16_to_float64(int16_t v, float_status *status)
-{
- return int32_to_float64(v, status);
-}
-
-static inline float64 uint16_to_float64(uint16_t v, float_status *status)
-{
- return uint32_to_float64(v, status);
-}
-
/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
*----------------------------------------------------------------------------*/
@@ -354,6 +337,11 @@ uint64_t float16_to_uint64(float16 a, float_status *status);
int64_t float16_to_int64_round_to_zero(float16, float_status *status);
uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
float16 int16_to_float16(int16_t a, float_status *status);
+float16 int32_to_float16(int32_t a, float_status *status);
+float16 int64_to_float16(int64_t a, float_status *status);
+float16 uint16_to_float16(uint16_t a, float_status *status);
+float16 uint32_to_float16(uint32_t a, float_status *status);
+float16 uint64_to_float16(uint64_t a, float_status *status);
/*----------------------------------------------------------------------------
| Software half-precision operations.
These are considerably simpler as the lower order integers can just use the higher order conversion function. As the decomposed fractional part is a full 64 bit rounding and inexact handling comes from the pack functions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> --- fpu/softfloat.c | 358 +++++++++++++++++++++++++----------------------- include/fpu/softfloat.h | 30 ++-- 2 files changed, 195 insertions(+), 193 deletions(-) -- 2.15.1