@@ -910,6 +910,10 @@ int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
+void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el);
+#else
+static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
+static inline void aarch64_sve_change_el(CPUARMState *env, int o, int n) { }
#endif
target_ulong do_arm_semihosting(CPUARMState *env);
@@ -410,45 +410,3 @@ static void aarch64_cpu_register_types(void)
}
type_init(aarch64_cpu_register_types)
-
-/* The manual says that when SVE is enabled and VQ is widened the
- * implementation is allowed to zero the previously inaccessible
- * portion of the registers. The corollary to that is that when
- * SVE is enabled and VQ is narrowed we are also allowed to zero
- * the now inaccessible portion of the registers.
- *
- * The intent of this is that no predicate bit beyond VQ is ever set.
- * Which means that some operations on predicate registers themselves
- * may operate on full uint64_t or even unrolled across the maximum
- * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
- * may well be cheaper than conditionals to restrict the operation
- * to the relevant portion of a uint16_t[16].
- *
- * TODO: Need to call this for changes to the real system registers
- * and EL state changes.
- */
-void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
-{
- int i, j;
- uint64_t pmask;
-
- assert(vq >= 1 && vq <= ARM_MAX_VQ);
- assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
-
- /* Zap the high bits of the zregs. */
- for (i = 0; i < 32; i++) {
- memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
- }
-
- /* Zap the high bits of the pregs and ffr. */
- pmask = 0;
- if (vq & 3) {
- pmask = ~(-1ULL << (16 * (vq & 3)));
- }
- for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
- for (i = 0; i < 17; ++i) {
- env->vfp.pregs[i].p[j] &= pmask;
- }
- pmask = 0;
- }
-}
@@ -4461,11 +4461,44 @@ static int sve_exception_el(CPUARMState *env, int el)
return 0;
}
+/*
+ * Given that SVE is enabled, return the vector length for EL.
+ */
+static uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
+{
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ uint32_t zcr_len = cpu->sve_max_vq - 1;
+
+ if (el <= 1) {
+ zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
+ }
+ if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
+ zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
+ }
+ if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
+ zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
+ }
+ return zcr_len;
+}
+
static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
+ int cur_el = arm_current_el(env);
+ int old_len = sve_zcr_len_for_el(env, cur_el);
+ int new_len;
+
/* Bits other than [3:0] are RAZ/WI. */
raw_write(env, ri, value & 0xf);
+
+ /*
+ * Because we arrived here, we know both FP and SVE are enabled;
+ * otherwise we would have trapped access to the ZCR_ELn register.
+ */
+ new_len = sve_zcr_len_for_el(env, cur_el);
+ if (new_len < old_len) {
+ aarch64_sve_narrow_vq(env, new_len + 1);
+ }
}
static const ARMCPRegInfo zcr_el1_reginfo = {
@@ -8305,8 +8338,11 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
unsigned int new_el = env->exception.target_el;
target_ulong addr = env->cp15.vbar_el[new_el];
unsigned int new_mode = aarch64_pstate_mode(new_el, true);
+ unsigned int cur_el = arm_current_el(env);
- if (arm_current_el(env) < new_el) {
+ aarch64_sve_change_el(env, cur_el, new_el);
+
+ if (cur_el < new_el) {
/* Entry vector offset depends on whether the implemented EL
* immediately lower than the target level is using AArch32 or AArch64
*/
@@ -12598,18 +12634,7 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
if (sve_el != 0 && fp_el == 0) {
zcr_len = 0;
} else {
- ARMCPU *cpu = arm_env_get_cpu(env);
-
- zcr_len = cpu->sve_max_vq - 1;
- if (current_el <= 1) {
- zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
- }
- if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
- zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
- }
- if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
- zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
- }
+ zcr_len = sve_zcr_len_for_el(env, current_el);
}
flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
@@ -12665,3 +12690,85 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
*pflags = flags;
*cs_base = 0;
}
+
+#ifdef TARGET_AARCH64
+/*
+ * The manual says that when SVE is enabled and VQ is widened the
+ * implementation is allowed to zero the previously inaccessible
+ * portion of the registers. The corollary to that is that when
+ * SVE is enabled and VQ is narrowed we are also allowed to zero
+ * the now inaccessible portion of the registers.
+ *
+ * The intent of this is that no predicate bit beyond VQ is ever set.
+ * Which means that some operations on predicate registers themselves
+ * may operate on full uint64_t or even unrolled across the maximum
+ * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
+ * may well be cheaper than conditionals to restrict the operation
+ * to the relevant portion of a uint16_t[16].
+ */
+void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
+{
+ int i, j;
+ uint64_t pmask;
+
+ assert(vq >= 1 && vq <= ARM_MAX_VQ);
+ assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
+
+ /* Zap the high bits of the zregs. */
+ for (i = 0; i < 32; i++) {
+ memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
+ }
+
+ /* Zap the high bits of the pregs and ffr. */
+ pmask = 0;
+ if (vq & 3) {
+ pmask = ~(-1ULL << (16 * (vq & 3)));
+ }
+ for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
+ for (i = 0; i < 17; ++i) {
+ env->vfp.pregs[i].p[j] &= pmask;
+ }
+ pmask = 0;
+ }
+}
+
+/*
+ * Notice a change in SVE vector size when changing EL.
+ */
+void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el)
+{
+ int old_len, new_len;
+
+ /* Nothing to do if no SVE. */
+ if (!arm_feature(env, ARM_FEATURE_SVE)) {
+ return;
+ }
+
+ /* Nothing to do if FP is disabled in either EL. */
+ if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
+ return;
+ }
+
+ /*
+ * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
+ * at ELx, or not available because the EL is in AArch32 state, then
+ * for all purposes other than a direct read, the ZCR_ELx.LEN field
+ * has an effective value of 0".
+ *
+ * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
+ * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
+ * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
+ * we already have the correct register contents when encountering the
+ * vq0->vq0 transition between EL0->EL1.
+ */
+ old_len = (arm_el_is_aa64(env, old_el) && !sve_exception_el(env, old_el)
+ ? sve_zcr_len_for_el(env, old_el) : 0);
+ new_len = (arm_el_is_aa64(env, new_el) && !sve_exception_el(env, new_el)
+ ? sve_zcr_len_for_el(env, new_el) : 0);
+
+ /* When changing vector length, clear inaccessible state. */
+ if (new_len < old_len) {
+ aarch64_sve_narrow_vq(env, new_len + 1);
+ }
+}
+#endif
@@ -1082,6 +1082,7 @@ void HELPER(exception_return)(CPUARMState *env)
"AArch64 EL%d PC 0x%" PRIx64 "\n",
cur_el, new_el, env->pc);
}
+ aarch64_sve_change_el(env, cur_el, new_el);
qemu_mutex_lock_iothread();
arm_call_el_change_hook(arm_env_get_cpu(env));