Message ID | 1405326487-15346-4-git-send-email-m.szyprowski@samsung.com |
---|---|
State | New |
Headers | show |
On Mon, 14 Jul 2014 10:28:06 +0200, Marek Szyprowski <m.szyprowski@samsung.com> wrote: > Initialization procedure of dma coherent pool has been split into two > parts, so memory pool can now be initialized without assigning to > particular struct device. Then initialized region can be assigned to > more than one struct device. To protect from concurent allocations from > different devices, a spinlock has been added to dma_coherent_mem > structure. The last part of this patch adds support for handling > 'shared-dma-pool' reserved-memory device tree nodes. > > Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> I think this looks okay. It isn't in my area of expertise though. Comments below. > --- > drivers/base/dma-coherent.c | 137 ++++++++++++++++++++++++++++++++++++++------ > 1 file changed, 118 insertions(+), 19 deletions(-) > > diff --git a/drivers/base/dma-coherent.c b/drivers/base/dma-coherent.c > index 7d6e84a51424..7185a4f247e1 100644 > --- a/drivers/base/dma-coherent.c > +++ b/drivers/base/dma-coherent.c > @@ -14,11 +14,14 @@ struct dma_coherent_mem { > int size; > int flags; > unsigned long *bitmap; > + spinlock_t spinlock; > }; > > -int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, > - dma_addr_t device_addr, size_t size, int flags) > +static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t device_addr, > + size_t size, int flags, > + struct dma_coherent_mem **mem) This is a bit odd. Why wouldn't you return the dma_mem pointer directly instead of passing in a **mem argument? > { > + struct dma_coherent_mem *dma_mem = NULL; > void __iomem *mem_base = NULL; > int pages = size >> PAGE_SHIFT; > int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); > @@ -27,27 +30,26 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, > goto out; > if (!size) > goto out; > - if (dev->dma_mem) > - goto out; > - > - /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ > > mem_base = ioremap(phys_addr, size); > if (!mem_base) > goto out; > > - dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); > - if (!dev->dma_mem) > + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); > + if (!dma_mem) > goto out; > - dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); > - if (!dev->dma_mem->bitmap) > + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); > + if (!dma_mem->bitmap) > goto free1_out; > > - dev->dma_mem->virt_base = mem_base; > - dev->dma_mem->device_base = device_addr; > - dev->dma_mem->pfn_base = PFN_DOWN(phys_addr); > - dev->dma_mem->size = pages; > - dev->dma_mem->flags = flags; > + dma_mem->virt_base = mem_base; > + dma_mem->device_base = device_addr; > + dma_mem->pfn_base = PFN_DOWN(phys_addr); > + dma_mem->size = pages; > + dma_mem->flags = flags; > + spin_lock_init(&dma_mem->spinlock); > + > + *mem = dma_mem; > > if (flags & DMA_MEMORY_MAP) > return DMA_MEMORY_MAP; > @@ -55,12 +57,51 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, > return DMA_MEMORY_IO; > > free1_out: > - kfree(dev->dma_mem); > + kfree(dma_mem); > out: > if (mem_base) > iounmap(mem_base); > return 0; > } > + > +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) > +{ > + if (!mem) > + return; > + iounmap(mem->virt_base); > + kfree(mem->bitmap); > + kfree(mem); > +} > + > +static int dma_assign_coherent_memory(struct device *dev, > + struct dma_coherent_mem *mem) > +{ > + if (dev->dma_mem) > + return -EBUSY; > + > + dev->dma_mem = mem; > + /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ > + > + return 0; > +} > + > +int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, > + dma_addr_t device_addr, size_t size, int flags) > +{ > + struct dma_coherent_mem *mem; > + int ret; > + > + ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, > + &mem); > + if (ret == 0) > + return 0; > + > + if (dma_assign_coherent_memory(dev, mem) == 0) > + return ret; > + > + dma_release_coherent_memory(mem); > + return 0; > +} > EXPORT_SYMBOL(dma_declare_coherent_memory); > > void dma_release_declared_memory(struct device *dev) > @@ -69,10 +110,8 @@ void dma_release_declared_memory(struct device *dev) > > if (!mem) > return; > + dma_release_coherent_memory(mem); > dev->dma_mem = NULL; > - iounmap(mem->virt_base); > - kfree(mem->bitmap); > - kfree(mem); > } > EXPORT_SYMBOL(dma_release_declared_memory); > > @@ -80,6 +119,7 @@ void *dma_mark_declared_memory_occupied(struct device *dev, > dma_addr_t device_addr, size_t size) > { > struct dma_coherent_mem *mem = dev->dma_mem; > + unsigned long flags; > int pos, err; > > size += device_addr & ~PAGE_MASK; > @@ -87,8 +127,11 @@ void *dma_mark_declared_memory_occupied(struct device *dev, > if (!mem) > return ERR_PTR(-EINVAL); > > + spin_lock_irqsave(&mem->spinlock, flags); > pos = (device_addr - mem->device_base) >> PAGE_SHIFT; > err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); > + spin_unlock_irqrestore(&mem->spinlock, flags); > + > if (err != 0) > return ERR_PTR(err); > return mem->virt_base + (pos << PAGE_SHIFT); > @@ -115,6 +158,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, > { > struct dma_coherent_mem *mem; > int order = get_order(size); > + unsigned long flags; > int pageno; > > if (!dev) > @@ -124,6 +168,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, > return 0; > > *ret = NULL; > + spin_lock_irqsave(&mem->spinlock, flags); > > if (unlikely(size > (mem->size << PAGE_SHIFT))) > goto err; > @@ -138,10 +183,12 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, > *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); > *ret = mem->virt_base + (pageno << PAGE_SHIFT); > memset(*ret, 0, size); > + spin_unlock_irqrestore(&mem->spinlock, flags); > > return 1; > > err: > + spin_unlock_irqrestore(&mem->spinlock, flags); > /* > * In the case where the allocation can not be satisfied from the > * per-device area, try to fall back to generic memory if the > @@ -171,8 +218,11 @@ int dma_release_from_coherent(struct device *dev, int order, void *vaddr) > if (mem && vaddr >= mem->virt_base && vaddr < > (mem->virt_base + (mem->size << PAGE_SHIFT))) { > int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; > + unsigned long flags; > > + spin_lock_irqsave(&mem->spinlock, flags); > bitmap_release_region(mem->bitmap, page, order); > + spin_unlock_irqrestore(&mem->spinlock, flags); > return 1; > } > return 0; > @@ -218,3 +268,52 @@ int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, > return 0; > } > EXPORT_SYMBOL(dma_mmap_from_coherent); > + > +/* > + * Support for reserved memory regions defined in device tree > + */ > +#ifdef CONFIG_OF_RESERVED_MEM > +#include <linux/of.h> > +#include <linux/of_fdt.h> > +#include <linux/of_reserved_mem.h> > + > +static void rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) > +{ > + struct dma_coherent_mem *mem = rmem->priv; Will the reserved_mem->priv pointer ever point to some other kind of structure? How do we know that the pointer here is always a dma_coherent_mem struct (if there are other uses of priv, what is the guarantee against another user assigning something to it?) Is it the reserved_mem_ops below that provide the guarantee? If it is a risk, then the alternative would be to put an explicit dma_coherent_mem pointer into the reserved_mem structure. > + if (!mem && > + dma_init_coherent_memory(rmem->base, rmem->base, rmem->size, > + DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE, > + &mem) != DMA_MEMORY_MAP) { > + pr_info("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", > + &rmem->base, (unsigned long)rmem->size / SZ_1M); > + return; > + } > + rmem->priv = mem; > + dma_assign_coherent_memory(dev, mem); > +} > + > +static void rmem_dma_device_release(struct reserved_mem *rmem, > + struct device *dev) > +{ > + dev->dma_mem = NULL; > +} > + > +static const struct reserved_mem_ops rmem_dma_ops = { > + .device_init = rmem_dma_device_init, > + .device_release = rmem_dma_device_release, > +}; > + > +static int __init rmem_dma_setup(struct reserved_mem *rmem) > +{ > + unsigned long node = rmem->fdt_node; > + > + if (of_get_flat_dt_prop(node, "reusable", NULL)) > + return -EINVAL; > + > + rmem->ops = &rmem_dma_ops; > + pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n", > + &rmem->base, (unsigned long)rmem->size / SZ_1M); > + return 0; > +} > +RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); > +#endif > -- > 1.9.2 > -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Hello, On 2014-07-29 23:54, Grant Likely wrote: > On Mon, 14 Jul 2014 10:28:06 +0200, Marek Szyprowski <m.szyprowski@samsung.com> wrote: >> Initialization procedure of dma coherent pool has been split into two >> parts, so memory pool can now be initialized without assigning to >> particular struct device. Then initialized region can be assigned to >> more than one struct device. To protect from concurent allocations from >> different devices, a spinlock has been added to dma_coherent_mem >> structure. The last part of this patch adds support for handling >> 'shared-dma-pool' reserved-memory device tree nodes. >> >> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> > I think this looks okay. It isn't in my area of expertise though. > Comments below. > >> --- >> drivers/base/dma-coherent.c | 137 ++++++++++++++++++++++++++++++++++++++------ >> 1 file changed, 118 insertions(+), 19 deletions(-) >> >> diff --git a/drivers/base/dma-coherent.c b/drivers/base/dma-coherent.c >> index 7d6e84a51424..7185a4f247e1 100644 >> --- a/drivers/base/dma-coherent.c >> +++ b/drivers/base/dma-coherent.c >> @@ -14,11 +14,14 @@ struct dma_coherent_mem { >> int size; >> int flags; >> unsigned long *bitmap; >> + spinlock_t spinlock; >> }; >> >> -int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, >> - dma_addr_t device_addr, size_t size, int flags) >> +static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t device_addr, >> + size_t size, int flags, >> + struct dma_coherent_mem **mem) > This is a bit odd. Why wouldn't you return the dma_mem pointer directly > instead of passing in a **mem argument? Because this function (as a direct successor of dma_declare_coherent_memory) doesn't return typical error codes, but some custom values like DMA_MEMORY_MAP, DMA_MEMORY_IO or zero (which means failure). I wanted to avoid confusion with typical error handling path and IS_ERR/ERR_PTR usage used widely in other functions. This probably should be unified with the rest of kernel some day, but right now I wanted to keep the patch simple and easy to review. >> { >> + struct dma_coherent_mem *dma_mem = NULL; >> void __iomem *mem_base = NULL; >> int pages = size >> PAGE_SHIFT; >> int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); >> @@ -27,27 +30,26 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, >> goto out; >> if (!size) >> goto out; >> - if (dev->dma_mem) >> - goto out; >> - >> - /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ >> >> mem_base = ioremap(phys_addr, size); >> if (!mem_base) >> goto out; >> >> - dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); >> - if (!dev->dma_mem) >> + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); >> + if (!dma_mem) >> goto out; >> - dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >> - if (!dev->dma_mem->bitmap) >> + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >> + if (!dma_mem->bitmap) >> goto free1_out; >> >> - dev->dma_mem->virt_base = mem_base; >> - dev->dma_mem->device_base = device_addr; >> - dev->dma_mem->pfn_base = PFN_DOWN(phys_addr); >> - dev->dma_mem->size = pages; >> - dev->dma_mem->flags = flags; >> + dma_mem->virt_base = mem_base; >> + dma_mem->device_base = device_addr; >> + dma_mem->pfn_base = PFN_DOWN(phys_addr); >> + dma_mem->size = pages; >> + dma_mem->flags = flags; >> + spin_lock_init(&dma_mem->spinlock); >> + >> + *mem = dma_mem; >> >> if (flags & DMA_MEMORY_MAP) >> return DMA_MEMORY_MAP; >> @@ -55,12 +57,51 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, >> return DMA_MEMORY_IO; >> >> free1_out: >> - kfree(dev->dma_mem); >> + kfree(dma_mem); >> out: >> if (mem_base) >> iounmap(mem_base); >> return 0; >> } >> + >> +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) >> +{ >> + if (!mem) >> + return; >> + iounmap(mem->virt_base); >> + kfree(mem->bitmap); >> + kfree(mem); >> +} >> + >> +static int dma_assign_coherent_memory(struct device *dev, >> + struct dma_coherent_mem *mem) >> +{ >> + if (dev->dma_mem) >> + return -EBUSY; >> + >> + dev->dma_mem = mem; >> + /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ >> + >> + return 0; >> +} >> + >> +int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, >> + dma_addr_t device_addr, size_t size, int flags) >> +{ >> + struct dma_coherent_mem *mem; >> + int ret; >> + >> + ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, >> + &mem); >> + if (ret == 0) >> + return 0; >> + >> + if (dma_assign_coherent_memory(dev, mem) == 0) >> + return ret; >> + >> + dma_release_coherent_memory(mem); >> + return 0; >> +} >> EXPORT_SYMBOL(dma_declare_coherent_memory); >> >> void dma_release_declared_memory(struct device *dev) >> @@ -69,10 +110,8 @@ void dma_release_declared_memory(struct device *dev) >> >> if (!mem) >> return; >> + dma_release_coherent_memory(mem); >> dev->dma_mem = NULL; >> - iounmap(mem->virt_base); >> - kfree(mem->bitmap); >> - kfree(mem); >> } >> EXPORT_SYMBOL(dma_release_declared_memory); >> >> @@ -80,6 +119,7 @@ void *dma_mark_declared_memory_occupied(struct device *dev, >> dma_addr_t device_addr, size_t size) >> { >> struct dma_coherent_mem *mem = dev->dma_mem; >> + unsigned long flags; >> int pos, err; >> >> size += device_addr & ~PAGE_MASK; >> @@ -87,8 +127,11 @@ void *dma_mark_declared_memory_occupied(struct device *dev, >> if (!mem) >> return ERR_PTR(-EINVAL); >> >> + spin_lock_irqsave(&mem->spinlock, flags); >> pos = (device_addr - mem->device_base) >> PAGE_SHIFT; >> err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); >> + spin_unlock_irqrestore(&mem->spinlock, flags); >> + >> if (err != 0) >> return ERR_PTR(err); >> return mem->virt_base + (pos << PAGE_SHIFT); >> @@ -115,6 +158,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, >> { >> struct dma_coherent_mem *mem; >> int order = get_order(size); >> + unsigned long flags; >> int pageno; >> >> if (!dev) >> @@ -124,6 +168,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, >> return 0; >> >> *ret = NULL; >> + spin_lock_irqsave(&mem->spinlock, flags); >> >> if (unlikely(size > (mem->size << PAGE_SHIFT))) >> goto err; >> @@ -138,10 +183,12 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, >> *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); >> *ret = mem->virt_base + (pageno << PAGE_SHIFT); >> memset(*ret, 0, size); >> + spin_unlock_irqrestore(&mem->spinlock, flags); >> >> return 1; >> >> err: >> + spin_unlock_irqrestore(&mem->spinlock, flags); >> /* >> * In the case where the allocation can not be satisfied from the >> * per-device area, try to fall back to generic memory if the >> @@ -171,8 +218,11 @@ int dma_release_from_coherent(struct device *dev, int order, void *vaddr) >> if (mem && vaddr >= mem->virt_base && vaddr < >> (mem->virt_base + (mem->size << PAGE_SHIFT))) { >> int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; >> + unsigned long flags; >> >> + spin_lock_irqsave(&mem->spinlock, flags); >> bitmap_release_region(mem->bitmap, page, order); >> + spin_unlock_irqrestore(&mem->spinlock, flags); >> return 1; >> } >> return 0; >> @@ -218,3 +268,52 @@ int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, >> return 0; >> } >> EXPORT_SYMBOL(dma_mmap_from_coherent); >> + >> +/* >> + * Support for reserved memory regions defined in device tree >> + */ >> +#ifdef CONFIG_OF_RESERVED_MEM >> +#include <linux/of.h> >> +#include <linux/of_fdt.h> >> +#include <linux/of_reserved_mem.h> >> + >> +static void rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) >> +{ >> + struct dma_coherent_mem *mem = rmem->priv; > Will the reserved_mem->priv pointer ever point to some other kind of > structure? How do we know that the pointer here is always a > dma_coherent_mem struct (if there are other uses of priv, what is the > guarantee against another user assigning something to it?) Is it the > reserved_mem_ops below that provide the guarantee? reserved_mem_ops are set by the given reserved memory driver and access to priv pointer is limited only to that driver. This pattern is used widely across the whole kernel, so I don't think that a separate pointer to particular structure type is needed. > If it is a risk, then the alternative would be to put an explicit > dma_coherent_mem pointer into the reserved_mem structure. If one messes with priv pointers, he should expect serious problems and we really cannot prevent him anyway. >> + if (!mem && >> + dma_init_coherent_memory(rmem->base, rmem->base, rmem->size, >> + DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE, >> + &mem) != DMA_MEMORY_MAP) { >> + pr_info("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", >> + &rmem->base, (unsigned long)rmem->size / SZ_1M); >> + return; >> + } >> + rmem->priv = mem; >> + dma_assign_coherent_memory(dev, mem); >> +} >> + >> +static void rmem_dma_device_release(struct reserved_mem *rmem, >> + struct device *dev) >> +{ >> + dev->dma_mem = NULL; >> +} >> + >> +static const struct reserved_mem_ops rmem_dma_ops = { >> + .device_init = rmem_dma_device_init, >> + .device_release = rmem_dma_device_release, >> +}; >> + >> +static int __init rmem_dma_setup(struct reserved_mem *rmem) >> +{ >> + unsigned long node = rmem->fdt_node; >> + >> + if (of_get_flat_dt_prop(node, "reusable", NULL)) >> + return -EINVAL; >> + >> + rmem->ops = &rmem_dma_ops; >> + pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n", >> + &rmem->base, (unsigned long)rmem->size / SZ_1M); >> + return 0; >> +} >> +RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); >> +#endif >> -- >> 1.9.2 Best regards
On Tue, Jul 29, 2014 at 11:33 PM, Marek Szyprowski <m.szyprowski@samsung.com> wrote: > Hello, > > > On 2014-07-29 23:54, Grant Likely wrote: >> >> On Mon, 14 Jul 2014 10:28:06 +0200, Marek Szyprowski >> <m.szyprowski@samsung.com> wrote: >>> >>> Initialization procedure of dma coherent pool has been split into two >>> parts, so memory pool can now be initialized without assigning to >>> particular struct device. Then initialized region can be assigned to >>> more than one struct device. To protect from concurent allocations from >>> different devices, a spinlock has been added to dma_coherent_mem >>> structure. The last part of this patch adds support for handling >>> 'shared-dma-pool' reserved-memory device tree nodes. >>> >>> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> >> >> I think this looks okay. It isn't in my area of expertise though. >> Comments below. >> >>> --- >>> drivers/base/dma-coherent.c | 137 >>> ++++++++++++++++++++++++++++++++++++++------ >>> 1 file changed, 118 insertions(+), 19 deletions(-) >>> >>> diff --git a/drivers/base/dma-coherent.c b/drivers/base/dma-coherent.c >>> index 7d6e84a51424..7185a4f247e1 100644 >>> --- a/drivers/base/dma-coherent.c >>> +++ b/drivers/base/dma-coherent.c >>> @@ -14,11 +14,14 @@ struct dma_coherent_mem { >>> int size; >>> int flags; >>> unsigned long *bitmap; >>> + spinlock_t spinlock; >>> }; >>> -int dma_declare_coherent_memory(struct device *dev, phys_addr_t >>> phys_addr, >>> - dma_addr_t device_addr, size_t size, int >>> flags) >>> +static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t >>> device_addr, >>> + size_t size, int flags, >>> + struct dma_coherent_mem **mem) >> >> This is a bit odd. Why wouldn't you return the dma_mem pointer directly >> instead of passing in a **mem argument? > > > Because this function (as a direct successor of dma_declare_coherent_memory) > doesn't > return typical error codes, but some custom values like DMA_MEMORY_MAP, > DMA_MEMORY_IO > or zero (which means failure). I wanted to avoid confusion with typical > error > handling path and IS_ERR/ERR_PTR usage used widely in other functions. This > probably > should be unified with the rest of kernel some day, but right now I wanted > to keep > the patch simple and easy to review. > > >>> { >>> + struct dma_coherent_mem *dma_mem = NULL; >>> void __iomem *mem_base = NULL; >>> int pages = size >> PAGE_SHIFT; >>> int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); >>> @@ -27,27 +30,26 @@ int dma_declare_coherent_memory(struct device *dev, >>> phys_addr_t phys_addr, >>> goto out; >>> if (!size) >>> goto out; >>> - if (dev->dma_mem) >>> - goto out; >>> - >>> - /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN >>> */ >>> mem_base = ioremap(phys_addr, size); >>> if (!mem_base) >>> goto out; >>> - dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), >>> GFP_KERNEL); >>> - if (!dev->dma_mem) >>> + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); >>> + if (!dma_mem) >>> goto out; >>> - dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >>> - if (!dev->dma_mem->bitmap) >>> + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >>> + if (!dma_mem->bitmap) >>> goto free1_out; >>> - dev->dma_mem->virt_base = mem_base; >>> - dev->dma_mem->device_base = device_addr; >>> - dev->dma_mem->pfn_base = PFN_DOWN(phys_addr); >>> - dev->dma_mem->size = pages; >>> - dev->dma_mem->flags = flags; >>> + dma_mem->virt_base = mem_base; >>> + dma_mem->device_base = device_addr; >>> + dma_mem->pfn_base = PFN_DOWN(phys_addr); >>> + dma_mem->size = pages; >>> + dma_mem->flags = flags; >>> + spin_lock_init(&dma_mem->spinlock); >>> + >>> + *mem = dma_mem; >>> if (flags & DMA_MEMORY_MAP) >>> return DMA_MEMORY_MAP; >>> @@ -55,12 +57,51 @@ int dma_declare_coherent_memory(struct device *dev, >>> phys_addr_t phys_addr, >>> return DMA_MEMORY_IO; >>> free1_out: >>> - kfree(dev->dma_mem); >>> + kfree(dma_mem); >>> out: >>> if (mem_base) >>> iounmap(mem_base); >>> return 0; >>> } >>> + >>> +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) >>> +{ >>> + if (!mem) >>> + return; >>> + iounmap(mem->virt_base); >>> + kfree(mem->bitmap); >>> + kfree(mem); >>> +} >>> + >>> +static int dma_assign_coherent_memory(struct device *dev, >>> + struct dma_coherent_mem *mem) >>> +{ >>> + if (dev->dma_mem) >>> + return -EBUSY; >>> + >>> + dev->dma_mem = mem; >>> + /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN >>> */ >>> + >>> + return 0; >>> +} >>> + >>> +int dma_declare_coherent_memory(struct device *dev, phys_addr_t >>> phys_addr, >>> + dma_addr_t device_addr, size_t size, int >>> flags) >>> +{ >>> + struct dma_coherent_mem *mem; >>> + int ret; >>> + >>> + ret = dma_init_coherent_memory(phys_addr, device_addr, size, >>> flags, >>> + &mem); >>> + if (ret == 0) >>> + return 0; >>> + >>> + if (dma_assign_coherent_memory(dev, mem) == 0) >>> + return ret; >>> + >>> + dma_release_coherent_memory(mem); >>> + return 0; >>> +} >>> EXPORT_SYMBOL(dma_declare_coherent_memory); >>> void dma_release_declared_memory(struct device *dev) >>> @@ -69,10 +110,8 @@ void dma_release_declared_memory(struct device *dev) >>> if (!mem) >>> return; >>> + dma_release_coherent_memory(mem); >>> dev->dma_mem = NULL; >>> - iounmap(mem->virt_base); >>> - kfree(mem->bitmap); >>> - kfree(mem); >>> } >>> EXPORT_SYMBOL(dma_release_declared_memory); >>> @@ -80,6 +119,7 @@ void *dma_mark_declared_memory_occupied(struct >>> device *dev, >>> dma_addr_t device_addr, size_t >>> size) >>> { >>> struct dma_coherent_mem *mem = dev->dma_mem; >>> + unsigned long flags; >>> int pos, err; >>> size += device_addr & ~PAGE_MASK; >>> @@ -87,8 +127,11 @@ void *dma_mark_declared_memory_occupied(struct device >>> *dev, >>> if (!mem) >>> return ERR_PTR(-EINVAL); >>> + spin_lock_irqsave(&mem->spinlock, flags); >>> pos = (device_addr - mem->device_base) >> PAGE_SHIFT; >>> err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); >>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>> + >>> if (err != 0) >>> return ERR_PTR(err); >>> return mem->virt_base + (pos << PAGE_SHIFT); >>> @@ -115,6 +158,7 @@ int dma_alloc_from_coherent(struct device *dev, >>> ssize_t size, >>> { >>> struct dma_coherent_mem *mem; >>> int order = get_order(size); >>> + unsigned long flags; >>> int pageno; >>> if (!dev) >>> @@ -124,6 +168,7 @@ int dma_alloc_from_coherent(struct device *dev, >>> ssize_t size, >>> return 0; >>> *ret = NULL; >>> + spin_lock_irqsave(&mem->spinlock, flags); >>> if (unlikely(size > (mem->size << PAGE_SHIFT))) >>> goto err; >>> @@ -138,10 +183,12 @@ int dma_alloc_from_coherent(struct device *dev, >>> ssize_t size, >>> *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); >>> *ret = mem->virt_base + (pageno << PAGE_SHIFT); >>> memset(*ret, 0, size); >>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>> return 1; >>> err: >>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>> /* >>> * In the case where the allocation can not be satisfied from the >>> * per-device area, try to fall back to generic memory if the >>> @@ -171,8 +218,11 @@ int dma_release_from_coherent(struct device *dev, >>> int order, void *vaddr) >>> if (mem && vaddr >= mem->virt_base && vaddr < >>> (mem->virt_base + (mem->size << PAGE_SHIFT))) { >>> int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; >>> + unsigned long flags; >>> + spin_lock_irqsave(&mem->spinlock, flags); >>> bitmap_release_region(mem->bitmap, page, order); >>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>> return 1; >>> } >>> return 0; >>> @@ -218,3 +268,52 @@ int dma_mmap_from_coherent(struct device *dev, >>> struct vm_area_struct *vma, >>> return 0; >>> } >>> EXPORT_SYMBOL(dma_mmap_from_coherent); >>> + >>> +/* >>> + * Support for reserved memory regions defined in device tree >>> + */ >>> +#ifdef CONFIG_OF_RESERVED_MEM >>> +#include <linux/of.h> >>> +#include <linux/of_fdt.h> >>> +#include <linux/of_reserved_mem.h> >>> + >>> +static void rmem_dma_device_init(struct reserved_mem *rmem, struct >>> device *dev) >>> +{ >>> + struct dma_coherent_mem *mem = rmem->priv; >> >> Will the reserved_mem->priv pointer ever point to some other kind of >> structure? How do we know that the pointer here is always a >> dma_coherent_mem struct (if there are other uses of priv, what is the >> guarantee against another user assigning something to it?) Is it the >> reserved_mem_ops below that provide the guarantee? > > > reserved_mem_ops are set by the given reserved memory driver and access to > priv > pointer is limited only to that driver. This pattern is used widely across > the > whole kernel, so I don't think that a separate pointer to particular > structure > type is needed. Yup, that's fine. I wanted to make sure. Do I need to be taking these patches through the DT tree? Do patches 3 & 4 make sense without patch 2? g. -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html
Hello, On 2014-07-31 01:49, Grant Likely wrote: > On Tue, Jul 29, 2014 at 11:33 PM, Marek Szyprowski > <m.szyprowski@samsung.com> wrote: >> Hello, >> >> >> On 2014-07-29 23:54, Grant Likely wrote: >>> On Mon, 14 Jul 2014 10:28:06 +0200, Marek Szyprowski >>> <m.szyprowski@samsung.com> wrote: >>>> Initialization procedure of dma coherent pool has been split into two >>>> parts, so memory pool can now be initialized without assigning to >>>> particular struct device. Then initialized region can be assigned to >>>> more than one struct device. To protect from concurent allocations from >>>> different devices, a spinlock has been added to dma_coherent_mem >>>> structure. The last part of this patch adds support for handling >>>> 'shared-dma-pool' reserved-memory device tree nodes. >>>> >>>> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> >>> I think this looks okay. It isn't in my area of expertise though. >>> Comments below. >>> >>>> --- >>>> drivers/base/dma-coherent.c | 137 >>>> ++++++++++++++++++++++++++++++++++++++------ >>>> 1 file changed, 118 insertions(+), 19 deletions(-) >>>> >>>> diff --git a/drivers/base/dma-coherent.c b/drivers/base/dma-coherent.c >>>> index 7d6e84a51424..7185a4f247e1 100644 >>>> --- a/drivers/base/dma-coherent.c >>>> +++ b/drivers/base/dma-coherent.c >>>> @@ -14,11 +14,14 @@ struct dma_coherent_mem { >>>> int size; >>>> int flags; >>>> unsigned long *bitmap; >>>> + spinlock_t spinlock; >>>> }; >>>> -int dma_declare_coherent_memory(struct device *dev, phys_addr_t >>>> phys_addr, >>>> - dma_addr_t device_addr, size_t size, int >>>> flags) >>>> +static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t >>>> device_addr, >>>> + size_t size, int flags, >>>> + struct dma_coherent_mem **mem) >>> This is a bit odd. Why wouldn't you return the dma_mem pointer directly >>> instead of passing in a **mem argument? >> >> Because this function (as a direct successor of dma_declare_coherent_memory) >> doesn't >> return typical error codes, but some custom values like DMA_MEMORY_MAP, >> DMA_MEMORY_IO >> or zero (which means failure). I wanted to avoid confusion with typical >> error >> handling path and IS_ERR/ERR_PTR usage used widely in other functions. This >> probably >> should be unified with the rest of kernel some day, but right now I wanted >> to keep >> the patch simple and easy to review. >> >> >>>> { >>>> + struct dma_coherent_mem *dma_mem = NULL; >>>> void __iomem *mem_base = NULL; >>>> int pages = size >> PAGE_SHIFT; >>>> int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); >>>> @@ -27,27 +30,26 @@ int dma_declare_coherent_memory(struct device *dev, >>>> phys_addr_t phys_addr, >>>> goto out; >>>> if (!size) >>>> goto out; >>>> - if (dev->dma_mem) >>>> - goto out; >>>> - >>>> - /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN >>>> */ >>>> mem_base = ioremap(phys_addr, size); >>>> if (!mem_base) >>>> goto out; >>>> - dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), >>>> GFP_KERNEL); >>>> - if (!dev->dma_mem) >>>> + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); >>>> + if (!dma_mem) >>>> goto out; >>>> - dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >>>> - if (!dev->dma_mem->bitmap) >>>> + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); >>>> + if (!dma_mem->bitmap) >>>> goto free1_out; >>>> - dev->dma_mem->virt_base = mem_base; >>>> - dev->dma_mem->device_base = device_addr; >>>> - dev->dma_mem->pfn_base = PFN_DOWN(phys_addr); >>>> - dev->dma_mem->size = pages; >>>> - dev->dma_mem->flags = flags; >>>> + dma_mem->virt_base = mem_base; >>>> + dma_mem->device_base = device_addr; >>>> + dma_mem->pfn_base = PFN_DOWN(phys_addr); >>>> + dma_mem->size = pages; >>>> + dma_mem->flags = flags; >>>> + spin_lock_init(&dma_mem->spinlock); >>>> + >>>> + *mem = dma_mem; >>>> if (flags & DMA_MEMORY_MAP) >>>> return DMA_MEMORY_MAP; >>>> @@ -55,12 +57,51 @@ int dma_declare_coherent_memory(struct device *dev, >>>> phys_addr_t phys_addr, >>>> return DMA_MEMORY_IO; >>>> free1_out: >>>> - kfree(dev->dma_mem); >>>> + kfree(dma_mem); >>>> out: >>>> if (mem_base) >>>> iounmap(mem_base); >>>> return 0; >>>> } >>>> + >>>> +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) >>>> +{ >>>> + if (!mem) >>>> + return; >>>> + iounmap(mem->virt_base); >>>> + kfree(mem->bitmap); >>>> + kfree(mem); >>>> +} >>>> + >>>> +static int dma_assign_coherent_memory(struct device *dev, >>>> + struct dma_coherent_mem *mem) >>>> +{ >>>> + if (dev->dma_mem) >>>> + return -EBUSY; >>>> + >>>> + dev->dma_mem = mem; >>>> + /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN >>>> */ >>>> + >>>> + return 0; >>>> +} >>>> + >>>> +int dma_declare_coherent_memory(struct device *dev, phys_addr_t >>>> phys_addr, >>>> + dma_addr_t device_addr, size_t size, int >>>> flags) >>>> +{ >>>> + struct dma_coherent_mem *mem; >>>> + int ret; >>>> + >>>> + ret = dma_init_coherent_memory(phys_addr, device_addr, size, >>>> flags, >>>> + &mem); >>>> + if (ret == 0) >>>> + return 0; >>>> + >>>> + if (dma_assign_coherent_memory(dev, mem) == 0) >>>> + return ret; >>>> + >>>> + dma_release_coherent_memory(mem); >>>> + return 0; >>>> +} >>>> EXPORT_SYMBOL(dma_declare_coherent_memory); >>>> void dma_release_declared_memory(struct device *dev) >>>> @@ -69,10 +110,8 @@ void dma_release_declared_memory(struct device *dev) >>>> if (!mem) >>>> return; >>>> + dma_release_coherent_memory(mem); >>>> dev->dma_mem = NULL; >>>> - iounmap(mem->virt_base); >>>> - kfree(mem->bitmap); >>>> - kfree(mem); >>>> } >>>> EXPORT_SYMBOL(dma_release_declared_memory); >>>> @@ -80,6 +119,7 @@ void *dma_mark_declared_memory_occupied(struct >>>> device *dev, >>>> dma_addr_t device_addr, size_t >>>> size) >>>> { >>>> struct dma_coherent_mem *mem = dev->dma_mem; >>>> + unsigned long flags; >>>> int pos, err; >>>> size += device_addr & ~PAGE_MASK; >>>> @@ -87,8 +127,11 @@ void *dma_mark_declared_memory_occupied(struct device >>>> *dev, >>>> if (!mem) >>>> return ERR_PTR(-EINVAL); >>>> + spin_lock_irqsave(&mem->spinlock, flags); >>>> pos = (device_addr - mem->device_base) >> PAGE_SHIFT; >>>> err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); >>>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>>> + >>>> if (err != 0) >>>> return ERR_PTR(err); >>>> return mem->virt_base + (pos << PAGE_SHIFT); >>>> @@ -115,6 +158,7 @@ int dma_alloc_from_coherent(struct device *dev, >>>> ssize_t size, >>>> { >>>> struct dma_coherent_mem *mem; >>>> int order = get_order(size); >>>> + unsigned long flags; >>>> int pageno; >>>> if (!dev) >>>> @@ -124,6 +168,7 @@ int dma_alloc_from_coherent(struct device *dev, >>>> ssize_t size, >>>> return 0; >>>> *ret = NULL; >>>> + spin_lock_irqsave(&mem->spinlock, flags); >>>> if (unlikely(size > (mem->size << PAGE_SHIFT))) >>>> goto err; >>>> @@ -138,10 +183,12 @@ int dma_alloc_from_coherent(struct device *dev, >>>> ssize_t size, >>>> *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); >>>> *ret = mem->virt_base + (pageno << PAGE_SHIFT); >>>> memset(*ret, 0, size); >>>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>>> return 1; >>>> err: >>>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>>> /* >>>> * In the case where the allocation can not be satisfied from the >>>> * per-device area, try to fall back to generic memory if the >>>> @@ -171,8 +218,11 @@ int dma_release_from_coherent(struct device *dev, >>>> int order, void *vaddr) >>>> if (mem && vaddr >= mem->virt_base && vaddr < >>>> (mem->virt_base + (mem->size << PAGE_SHIFT))) { >>>> int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; >>>> + unsigned long flags; >>>> + spin_lock_irqsave(&mem->spinlock, flags); >>>> bitmap_release_region(mem->bitmap, page, order); >>>> + spin_unlock_irqrestore(&mem->spinlock, flags); >>>> return 1; >>>> } >>>> return 0; >>>> @@ -218,3 +268,52 @@ int dma_mmap_from_coherent(struct device *dev, >>>> struct vm_area_struct *vma, >>>> return 0; >>>> } >>>> EXPORT_SYMBOL(dma_mmap_from_coherent); >>>> + >>>> +/* >>>> + * Support for reserved memory regions defined in device tree >>>> + */ >>>> +#ifdef CONFIG_OF_RESERVED_MEM >>>> +#include <linux/of.h> >>>> +#include <linux/of_fdt.h> >>>> +#include <linux/of_reserved_mem.h> >>>> + >>>> +static void rmem_dma_device_init(struct reserved_mem *rmem, struct >>>> device *dev) >>>> +{ >>>> + struct dma_coherent_mem *mem = rmem->priv; >>> Will the reserved_mem->priv pointer ever point to some other kind of >>> structure? How do we know that the pointer here is always a >>> dma_coherent_mem struct (if there are other uses of priv, what is the >>> guarantee against another user assigning something to it?) Is it the >>> reserved_mem_ops below that provide the guarantee? >> >> reserved_mem_ops are set by the given reserved memory driver and access to >> priv >> pointer is limited only to that driver. This pattern is used widely across >> the >> whole kernel, so I don't think that a separate pointer to particular >> structure >> type is needed. > Yup, that's fine. I wanted to make sure. > > Do I need to be taking these patches through the DT tree? Do patches 3 > & 4 make sense without patch 2? Patches 3 and 4 are independent from patch 1&2. Patch 4 depends on the other CMA patches, which has been merged to akpm tree. I think the easiest solution would be to get your Ack for both patches and I will ask Andrew Morton to take them together with other mm/CMA changes. Best regards
diff --git a/drivers/base/dma-coherent.c b/drivers/base/dma-coherent.c index 7d6e84a51424..7185a4f247e1 100644 --- a/drivers/base/dma-coherent.c +++ b/drivers/base/dma-coherent.c @@ -14,11 +14,14 @@ struct dma_coherent_mem { int size; int flags; unsigned long *bitmap; + spinlock_t spinlock; }; -int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, - dma_addr_t device_addr, size_t size, int flags) +static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t device_addr, + size_t size, int flags, + struct dma_coherent_mem **mem) { + struct dma_coherent_mem *dma_mem = NULL; void __iomem *mem_base = NULL; int pages = size >> PAGE_SHIFT; int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); @@ -27,27 +30,26 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, goto out; if (!size) goto out; - if (dev->dma_mem) - goto out; - - /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ mem_base = ioremap(phys_addr, size); if (!mem_base) goto out; - dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); - if (!dev->dma_mem) + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); + if (!dma_mem) goto out; - dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); - if (!dev->dma_mem->bitmap) + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); + if (!dma_mem->bitmap) goto free1_out; - dev->dma_mem->virt_base = mem_base; - dev->dma_mem->device_base = device_addr; - dev->dma_mem->pfn_base = PFN_DOWN(phys_addr); - dev->dma_mem->size = pages; - dev->dma_mem->flags = flags; + dma_mem->virt_base = mem_base; + dma_mem->device_base = device_addr; + dma_mem->pfn_base = PFN_DOWN(phys_addr); + dma_mem->size = pages; + dma_mem->flags = flags; + spin_lock_init(&dma_mem->spinlock); + + *mem = dma_mem; if (flags & DMA_MEMORY_MAP) return DMA_MEMORY_MAP; @@ -55,12 +57,51 @@ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, return DMA_MEMORY_IO; free1_out: - kfree(dev->dma_mem); + kfree(dma_mem); out: if (mem_base) iounmap(mem_base); return 0; } + +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) +{ + if (!mem) + return; + iounmap(mem->virt_base); + kfree(mem->bitmap); + kfree(mem); +} + +static int dma_assign_coherent_memory(struct device *dev, + struct dma_coherent_mem *mem) +{ + if (dev->dma_mem) + return -EBUSY; + + dev->dma_mem = mem; + /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ + + return 0; +} + +int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, int flags) +{ + struct dma_coherent_mem *mem; + int ret; + + ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, + &mem); + if (ret == 0) + return 0; + + if (dma_assign_coherent_memory(dev, mem) == 0) + return ret; + + dma_release_coherent_memory(mem); + return 0; +} EXPORT_SYMBOL(dma_declare_coherent_memory); void dma_release_declared_memory(struct device *dev) @@ -69,10 +110,8 @@ void dma_release_declared_memory(struct device *dev) if (!mem) return; + dma_release_coherent_memory(mem); dev->dma_mem = NULL; - iounmap(mem->virt_base); - kfree(mem->bitmap); - kfree(mem); } EXPORT_SYMBOL(dma_release_declared_memory); @@ -80,6 +119,7 @@ void *dma_mark_declared_memory_occupied(struct device *dev, dma_addr_t device_addr, size_t size) { struct dma_coherent_mem *mem = dev->dma_mem; + unsigned long flags; int pos, err; size += device_addr & ~PAGE_MASK; @@ -87,8 +127,11 @@ void *dma_mark_declared_memory_occupied(struct device *dev, if (!mem) return ERR_PTR(-EINVAL); + spin_lock_irqsave(&mem->spinlock, flags); pos = (device_addr - mem->device_base) >> PAGE_SHIFT; err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); + spin_unlock_irqrestore(&mem->spinlock, flags); + if (err != 0) return ERR_PTR(err); return mem->virt_base + (pos << PAGE_SHIFT); @@ -115,6 +158,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, { struct dma_coherent_mem *mem; int order = get_order(size); + unsigned long flags; int pageno; if (!dev) @@ -124,6 +168,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, return 0; *ret = NULL; + spin_lock_irqsave(&mem->spinlock, flags); if (unlikely(size > (mem->size << PAGE_SHIFT))) goto err; @@ -138,10 +183,12 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size, *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); *ret = mem->virt_base + (pageno << PAGE_SHIFT); memset(*ret, 0, size); + spin_unlock_irqrestore(&mem->spinlock, flags); return 1; err: + spin_unlock_irqrestore(&mem->spinlock, flags); /* * In the case where the allocation can not be satisfied from the * per-device area, try to fall back to generic memory if the @@ -171,8 +218,11 @@ int dma_release_from_coherent(struct device *dev, int order, void *vaddr) if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) { int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; + unsigned long flags; + spin_lock_irqsave(&mem->spinlock, flags); bitmap_release_region(mem->bitmap, page, order); + spin_unlock_irqrestore(&mem->spinlock, flags); return 1; } return 0; @@ -218,3 +268,52 @@ int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, return 0; } EXPORT_SYMBOL(dma_mmap_from_coherent); + +/* + * Support for reserved memory regions defined in device tree + */ +#ifdef CONFIG_OF_RESERVED_MEM +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> + +static void rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) +{ + struct dma_coherent_mem *mem = rmem->priv; + if (!mem && + dma_init_coherent_memory(rmem->base, rmem->base, rmem->size, + DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE, + &mem) != DMA_MEMORY_MAP) { + pr_info("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return; + } + rmem->priv = mem; + dma_assign_coherent_memory(dev, mem); +} + +static void rmem_dma_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + dev->dma_mem = NULL; +} + +static const struct reserved_mem_ops rmem_dma_ops = { + .device_init = rmem_dma_device_init, + .device_release = rmem_dma_device_release, +}; + +static int __init rmem_dma_setup(struct reserved_mem *rmem) +{ + unsigned long node = rmem->fdt_node; + + if (of_get_flat_dt_prop(node, "reusable", NULL)) + return -EINVAL; + + rmem->ops = &rmem_dma_ops; + pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return 0; +} +RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); +#endif
Initialization procedure of dma coherent pool has been split into two parts, so memory pool can now be initialized without assigning to particular struct device. Then initialized region can be assigned to more than one struct device. To protect from concurent allocations from different devices, a spinlock has been added to dma_coherent_mem structure. The last part of this patch adds support for handling 'shared-dma-pool' reserved-memory device tree nodes. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> --- drivers/base/dma-coherent.c | 137 ++++++++++++++++++++++++++++++++++++++------ 1 file changed, 118 insertions(+), 19 deletions(-)