@@ -24,19 +24,6 @@
#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
-static bool pmc_is_inactive(CPUPPCState *env, int sprn)
-{
- if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
- return true;
- }
-
- if (sprn < SPR_POWER_PMC5) {
- return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
- }
-
- return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
-}
-
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{
if (sprn == SPR_POWER_PMC1) {
@@ -46,80 +33,6 @@ static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
}
-/*
- * For PMCs 1-4, IBM POWER chips has support for an implementation
- * dependent event, 0x1E, that enables cycle counting. The Linux kernel
- * makes extensive use of 0x1E, so let's also support it.
- *
- * Likewise, event 0x2 is an implementation-dependent event that IBM
- * POWER chips implement (at least since POWER8) that is equivalent to
- * PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
- */
-static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
-{
- uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
- MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
- PMUEventType evt_type = PMU_EVENT_INVALID;
- uint8_t pmcsel;
- int i;
-
- if (pmc_is_inactive(env, sprn)) {
- return PMU_EVENT_INACTIVE;
- }
-
- if (sprn == SPR_POWER_PMC5) {
- return PMU_EVENT_INSTRUCTIONS;
- }
-
- if (sprn == SPR_POWER_PMC6) {
- return PMU_EVENT_CYCLES;
- }
-
- i = sprn - SPR_POWER_PMC1;
- pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
- MMCR1_EVT_SIZE);
-
- switch (pmcsel) {
- case 0x2:
- evt_type = PMU_EVENT_INSTRUCTIONS;
- break;
- case 0x1E:
- evt_type = PMU_EVENT_CYCLES;
- break;
- case 0xF0:
- /*
- * PMC1SEL = 0xF0 is the architected PowerISA v3.1
- * event that counts cycles using PMC1.
- */
- if (sprn == SPR_POWER_PMC1) {
- evt_type = PMU_EVENT_CYCLES;
- }
- break;
- case 0xFA:
- /*
- * PMC4SEL = 0xFA is the "instructions completed
- * with run latch set" event.
- */
- if (sprn == SPR_POWER_PMC4) {
- evt_type = PMU_EVENT_INSN_RUN_LATCH;
- }
- break;
- case 0xFE:
- /*
- * PMC1SEL = 0xFE is the architected PowerISA v3.1
- * event to sample instructions using PMC1.
- */
- if (sprn == SPR_POWER_PMC1) {
- evt_type = PMU_EVENT_INSTRUCTIONS;
- }
- break;
- default:
- break;
- }
-
- return evt_type;
-}
-
void pmu_update_summaries(CPUPPCState *env)
{
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
@@ -238,18 +151,16 @@ static void pmu_update_cycles(CPUPPCState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time;
- int sprn;
+ int sprn, cyc_cnt = env->pmc_cyc_cnt;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
- if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) {
- continue;
+ if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
+ /*
+ * The pseries and powernv clock runs at 1Ghz, meaning
+ * that 1 nanosec equals 1 cycle.
+ */
+ env->spr[sprn] += time_delta;
}
-
- /*
- * The pseries and powernv clock runs at 1Ghz, meaning
- * that 1 nanosec equals 1 cycle.
- */
- env->spr[sprn] += time_delta;
}
/* Update base_time for future calculations */
@@ -278,7 +189,7 @@ static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
return;
}
- if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES ||
+ if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
!pmc_has_overflow_enabled(env, sprn)) {
/* Overflow timer is not needed for this counter */
timer_del(pmc_overflow_timer);
@@ -286,7 +197,7 @@ static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
}
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
- timeout = 0;
+ timeout = 0;
} else {
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
}