@@ -1668,6 +1668,9 @@ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
return qemu_ram_addr_from_host_nofail(p);
}
+/* Load/store with atomicity primitives. */
+#include "ldst_atomicity.c.inc"
+
#ifdef CONFIG_PLUGIN
/*
* Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
@@ -2035,35 +2038,7 @@ static void validate_memop(MemOpIdx oi, MemOp expected)
* specifically for reading instructions from system memory. It is
* called by the translation loop and in some helpers where the code
* is disassembled. It shouldn't be called directly by guest code.
- */
-
-typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
- MemOpIdx oi, uintptr_t retaddr);
-
-static inline uint64_t QEMU_ALWAYS_INLINE
-load_memop(const void *haddr, MemOp op)
-{
- switch (op) {
- case MO_UB:
- return ldub_p(haddr);
- case MO_BEUW:
- return lduw_be_p(haddr);
- case MO_LEUW:
- return lduw_le_p(haddr);
- case MO_BEUL:
- return (uint32_t)ldl_be_p(haddr);
- case MO_LEUL:
- return (uint32_t)ldl_le_p(haddr);
- case MO_BEUQ:
- return ldq_be_p(haddr);
- case MO_LEUQ:
- return ldq_le_p(haddr);
- default:
- qemu_build_not_reached();
- }
-}
-
-/*
+ *
* For the benefit of TCG generated code, we want to avoid the
* complication of ABI-specific return type promotion and always
* return a value extended to the register size of the host. This is
@@ -2119,17 +2094,139 @@ static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
return ret_be;
}
+/**
+ * do_ld_parts_beN
+ * @p: translation parameters
+ * @ret_be: accumulated data
+ *
+ * As do_ld_bytes_beN, but atomically on each aligned part.
+ */
+static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
+{
+ void *haddr = p->haddr;
+ int size = p->size;
+
+ do {
+ uint64_t x;
+ int n;
+
+ /*
+ * Find minimum of alignment and size.
+ * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
+ * would have only checked the low bits of addr|size once at the start,
+ * but is just as easy.
+ */
+ switch (((uintptr_t)haddr | size) & 7) {
+ case 4:
+ x = cpu_to_be32(load_atomic4(haddr));
+ ret_be = (ret_be << 32) | x;
+ n = 4;
+ break;
+ case 2:
+ case 6:
+ x = cpu_to_be16(load_atomic2(haddr));
+ ret_be = (ret_be << 16) | x;
+ n = 2;
+ break;
+ default:
+ x = *(uint8_t *)haddr;
+ ret_be = (ret_be << 8) | x;
+ n = 1;
+ break;
+ case 0:
+ g_assert_not_reached();
+ }
+ haddr += n;
+ size -= n;
+ } while (size != 0);
+ return ret_be;
+}
+
+/**
+ * do_ld_parts_be4
+ * @p: translation parameters
+ * @ret_be: accumulated data
+ *
+ * As do_ld_bytes_beN, but with one atomic load.
+ * Four aligned bytes are guaranteed to cover the load.
+ */
+static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
+{
+ int o = p->addr & 3;
+ uint32_t x = load_atomic4(p->haddr - o);
+
+ x = cpu_to_be32(x);
+ x <<= o * 8;
+ x >>= (4 - p->size) * 8;
+ return (ret_be << (p->size * 8)) | x;
+}
+
+/**
+ * do_ld_parts_be8
+ * @p: translation parameters
+ * @ret_be: accumulated data
+ *
+ * As do_ld_bytes_beN, but with one atomic load.
+ * Eight aligned bytes are guaranteed to cover the load.
+ */
+static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
+ MMULookupPageData *p, uint64_t ret_be)
+{
+ int o = p->addr & 7;
+ uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
+
+ x = cpu_to_be64(x);
+ x <<= o * 8;
+ x >>= (8 - p->size) * 8;
+ return (ret_be << (p->size * 8)) | x;
+}
+
/*
* Wrapper for the above.
*/
static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
- uint64_t ret_be, int mmu_idx,
- MMUAccessType type, uintptr_t ra)
+ uint64_t ret_be, int mmu_idx, MMUAccessType type,
+ MemOp mop, uintptr_t ra)
{
+ MemOp atom;
+ unsigned tmp, half_size;
+
if (unlikely(p->flags & TLB_MMIO)) {
return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
- } else {
+ }
+
+ /*
+ * It is a given that we cross a page and therefore there is no
+ * atomicity for the load as a whole, but subobjects may need attention.
+ */
+ atom = mop & MO_ATOM_MASK;
+ switch (atom) {
+ case MO_ATOM_SUBALIGN:
+ return do_ld_parts_beN(p, ret_be);
+
+ case MO_ATOM_IFALIGN_PAIR:
+ case MO_ATOM_WITHIN16_PAIR:
+ tmp = mop & MO_SIZE;
+ tmp = tmp ? tmp - 1 : 0;
+ half_size = 1 << tmp;
+ if (atom == MO_ATOM_IFALIGN_PAIR
+ ? p->size == half_size
+ : p->size >= half_size) {
+ if (!HAVE_al8_fast && p->size < 4) {
+ return do_ld_whole_be4(p, ret_be);
+ } else {
+ return do_ld_whole_be8(env, ra, p, ret_be);
+ }
+ }
+ /* fall through */
+
+ case MO_ATOM_IFALIGN:
+ case MO_ATOM_WITHIN16:
+ case MO_ATOM_NONE:
return do_ld_bytes_beN(p, ret_be);
+
+ default:
+ g_assert_not_reached();
}
}
@@ -2153,7 +2250,7 @@ static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian, then swap if necessary. */
- ret = load_memop(p->haddr, MO_UW);
+ ret = load_atom_2(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap16(ret);
}
@@ -2170,7 +2267,7 @@ static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian. */
- ret = load_memop(p->haddr, MO_UL);
+ ret = load_atom_4(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap32(ret);
}
@@ -2187,7 +2284,7 @@ static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian. */
- ret = load_memop(p->haddr, MO_UQ);
+ ret = load_atom_8(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap64(ret);
}
@@ -2263,8 +2360,8 @@ static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
- ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra);
- ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra);
+ ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
+ ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap32(ret);
}
@@ -2297,8 +2394,8 @@ static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
- ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra);
- ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra);
+ ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
+ ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap64(ret);
}
@@ -931,6 +931,8 @@ static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
return ret;
}
+#include "ldst_atomicity.c.inc"
+
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
@@ -953,10 +955,10 @@ uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = lduw_be_p(haddr);
+ ret = load_atom_2(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_be16(ret);
}
uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
@@ -967,10 +969,10 @@ uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = ldl_be_p(haddr);
+ ret = load_atom_4(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_be32(ret);
}
uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
@@ -981,10 +983,10 @@ uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = ldq_be_p(haddr);
+ ret = load_atom_8(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_be64(ret);
}
uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
@@ -995,10 +997,10 @@ uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = lduw_le_p(haddr);
+ ret = load_atom_2(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_le16(ret);
}
uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
@@ -1009,10 +1011,10 @@ uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = ldl_le_p(haddr);
+ ret = load_atom_4(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_le32(ret);
}
uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
@@ -1023,10 +1025,10 @@ uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
- ret = ldq_le_p(haddr);
+ ret = load_atom_8(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
- return ret;
+ return cpu_to_le64(ret);
}
Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,
new file mode 100644
@@ -0,0 +1,566 @@
+/*
+ * Routines common to user and system emulation of load/store.
+ *
+ * Copyright (c) 2022 Linaro, Ltd.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#ifdef CONFIG_ATOMIC64
+# define HAVE_al8 true
+#else
+# define HAVE_al8 false
+#endif
+#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8)
+
+#if defined(CONFIG_ATOMIC128)
+# define HAVE_al16_fast true
+#else
+# define HAVE_al16_fast false
+#endif
+
+/**
+ * required_atomicity:
+ *
+ * Return the lg2 bytes of atomicity required by @memop for @p.
+ * If the operation must be split into two operations to be
+ * examined separately for atomicity, return -lg2.
+ */
+static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop)
+{
+ MemOp atom = memop & MO_ATOM_MASK;
+ MemOp size = memop & MO_SIZE;
+ MemOp half = size ? size - 1 : 0;
+ unsigned tmp;
+ int atmax;
+
+ switch (atom) {
+ case MO_ATOM_NONE:
+ atmax = MO_8;
+ break;
+
+ case MO_ATOM_IFALIGN_PAIR:
+ size = half;
+ /* fall through */
+
+ case MO_ATOM_IFALIGN:
+ tmp = (1 << size) - 1;
+ atmax = p & tmp ? MO_8 : size;
+ break;
+
+ case MO_ATOM_WITHIN16:
+ tmp = p & 15;
+ atmax = (tmp + (1 << size) <= 16 ? size : MO_8);
+ break;
+
+ case MO_ATOM_WITHIN16_PAIR:
+ tmp = p & 15;
+ if (tmp + (1 << size) <= 16) {
+ atmax = size;
+ } else if (tmp + (1 << half) == 16) {
+ /*
+ * The pair exactly straddles the boundary.
+ * Both halves are naturally aligned and atomic.
+ */
+ atmax = half;
+ } else {
+ /*
+ * One of the pair crosses the boundary, and is non-atomic.
+ * The other of the pair does not cross, and is atomic.
+ */
+ atmax = -half;
+ }
+ break;
+
+ case MO_ATOM_SUBALIGN:
+ /*
+ * Examine the alignment of p to determine if there are subobjects
+ * that must be aligned. Note that we only really need ctz4() --
+ * any more sigificant bits are discarded by the immediately
+ * following comparison.
+ */
+ tmp = ctz32(p);
+ atmax = MIN(size, tmp);
+ break;
+
+ default:
+ g_assert_not_reached();
+ }
+
+ /*
+ * Here we have the architectural atomicity of the operation.
+ * However, when executing in a serial context, we need no extra
+ * host atomicity in order to avoid racing. This reduction
+ * avoids looping with cpu_loop_exit_atomic.
+ */
+ if (cpu_in_serial_context(env_cpu(env))) {
+ return MO_8;
+ }
+ return atmax;
+}
+
+/**
+ * load_atomic2:
+ * @pv: host address
+ *
+ * Atomically load 2 aligned bytes from @pv.
+ */
+static inline uint16_t load_atomic2(void *pv)
+{
+ uint16_t *p = __builtin_assume_aligned(pv, 2);
+ return qatomic_read(p);
+}
+
+/**
+ * load_atomic4:
+ * @pv: host address
+ *
+ * Atomically load 4 aligned bytes from @pv.
+ */
+static inline uint32_t load_atomic4(void *pv)
+{
+ uint32_t *p = __builtin_assume_aligned(pv, 4);
+ return qatomic_read(p);
+}
+
+/**
+ * load_atomic8:
+ * @pv: host address
+ *
+ * Atomically load 8 aligned bytes from @pv.
+ */
+static inline uint64_t load_atomic8(void *pv)
+{
+ uint64_t *p = __builtin_assume_aligned(pv, 8);
+
+ qemu_build_assert(HAVE_al8);
+ return qatomic_read__nocheck(p);
+}
+
+/**
+ * load_atomic16:
+ * @pv: host address
+ *
+ * Atomically load 16 aligned bytes from @pv.
+ */
+static inline Int128 load_atomic16(void *pv)
+{
+#ifdef CONFIG_ATOMIC128
+ __uint128_t *p = __builtin_assume_aligned(pv, 16);
+ Int128Alias r;
+
+ r.u = qatomic_read__nocheck(p);
+ return r.s;
+#else
+ qemu_build_not_reached();
+#endif
+}
+
+/**
+ * load_atomic8_or_exit:
+ * @env: cpu context
+ * @ra: host unwind address
+ * @pv: host address
+ *
+ * Atomically load 8 aligned bytes from @pv.
+ * If this is not possible, longjmp out to restart serially.
+ */
+static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
+{
+ if (HAVE_al8) {
+ return load_atomic8(pv);
+ }
+
+#ifdef CONFIG_USER_ONLY
+ /*
+ * If the page is not writable, then assume the value is immutable
+ * and requires no locking. This ignores the case of MAP_SHARED with
+ * another process, because the fallback start_exclusive solution
+ * provides no protection across processes.
+ */
+ if (!page_check_range(h2g(pv), 8, PAGE_WRITE)) {
+ uint64_t *p = __builtin_assume_aligned(pv, 8);
+ return *p;
+ }
+#endif
+
+ /* Ultimate fallback: re-execute in serial context. */
+ cpu_loop_exit_atomic(env_cpu(env), ra);
+}
+
+/**
+ * load_atomic16_or_exit:
+ * @env: cpu context
+ * @ra: host unwind address
+ * @pv: host address
+ *
+ * Atomically load 16 aligned bytes from @pv.
+ * If this is not possible, longjmp out to restart serially.
+ */
+static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
+{
+ Int128 *p = __builtin_assume_aligned(pv, 16);
+
+ if (HAVE_al16_fast) {
+ return load_atomic16(p);
+ }
+
+#ifdef CONFIG_USER_ONLY
+ /*
+ * We can only use cmpxchg to emulate a load if the page is writable.
+ * If the page is not writable, then assume the value is immutable
+ * and requires no locking. This ignores the case of MAP_SHARED with
+ * another process, because the fallback start_exclusive solution
+ * provides no protection across processes.
+ */
+ if (!page_check_range(h2g(p), 16, PAGE_WRITE)) {
+ return *p;
+ }
+#endif
+
+ /*
+ * In system mode all guest pages are writable, and for user-only
+ * we have just checked writability. Try cmpxchg.
+ */
+#if defined(CONFIG_CMPXCHG128)
+ /* Swap 0 with 0, with the side-effect of returning the old value. */
+ {
+ Int128Alias r;
+ r.u = __sync_val_compare_and_swap_16((__uint128_t *)p, 0, 0);
+ return r.s;
+ }
+#endif
+
+ /* Ultimate fallback: re-execute in serial context. */
+ cpu_loop_exit_atomic(env_cpu(env), ra);
+}
+
+/**
+ * load_atom_extract_al4x2:
+ * @pv: host address
+ *
+ * Load 4 bytes from @p, from two sequential atomic 4-byte loads.
+ */
+static uint32_t load_atom_extract_al4x2(void *pv)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int sh = (pi & 3) * 8;
+ uint32_t a, b;
+
+ pv = (void *)(pi & ~3);
+ a = load_atomic4(pv);
+ b = load_atomic4(pv + 4);
+
+ if (HOST_BIG_ENDIAN) {
+ return (a << sh) | (b >> (-sh & 31));
+ } else {
+ return (a >> sh) | (b << (-sh & 31));
+ }
+}
+
+/**
+ * load_atom_extract_al8x2:
+ * @pv: host address
+ *
+ * Load 8 bytes from @p, from two sequential atomic 8-byte loads.
+ */
+static uint64_t load_atom_extract_al8x2(void *pv)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int sh = (pi & 7) * 8;
+ uint64_t a, b;
+
+ pv = (void *)(pi & ~7);
+ a = load_atomic8(pv);
+ b = load_atomic8(pv + 8);
+
+ if (HOST_BIG_ENDIAN) {
+ return (a << sh) | (b >> (-sh & 63));
+ } else {
+ return (a >> sh) | (b << (-sh & 63));
+ }
+}
+
+/**
+ * load_atom_extract_al8_or_exit:
+ * @env: cpu context
+ * @ra: host unwind address
+ * @pv: host address
+ * @s: object size in bytes, @s <= 4.
+ *
+ * Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does
+ * not cross an 8-byte boundary. This means that we can perform an atomic
+ * 8-byte load and extract.
+ * The value is returned in the low bits of a uint32_t.
+ */
+static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra,
+ void *pv, int s)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int o = pi & 7;
+ int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8;
+
+ pv = (void *)(pi & ~7);
+ return load_atomic8_or_exit(env, ra, pv) >> shr;
+}
+
+/**
+ * load_atom_extract_al16_or_exit:
+ * @env: cpu context
+ * @ra: host unwind address
+ * @p: host address
+ * @s: object size in bytes, @s <= 8.
+ *
+ * Atomically load @s bytes from @p, when p % 16 < 8
+ * and p % 16 + s > 8. I.e. does not cross a 16-byte
+ * boundary, but *does* cross an 8-byte boundary.
+ * This is the slow version, so we must have eliminated
+ * any faster load_atom_extract_al8_or_exit case.
+ *
+ * If this is not possible, longjmp out to restart serially.
+ */
+static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra,
+ void *pv, int s)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int o = pi & 7;
+ int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
+ Int128 r;
+
+ /*
+ * Note constraints above: p & 8 must be clear.
+ * Provoke SIGBUS if possible otherwise.
+ */
+ pv = (void *)(pi & ~7);
+ r = load_atomic16_or_exit(env, ra, pv);
+
+ r = int128_urshift(r, shr);
+ return int128_getlo(r);
+}
+
+/**
+ * load_atom_extract_al16_or_al8:
+ * @p: host address
+ * @s: object size in bytes, @s <= 8.
+ *
+ * Load @s bytes from @p, when p % s != 0. If [p, p+s-1] does not
+ * cross an 16-byte boundary then the access must be 16-byte atomic,
+ * otherwise the access must be 8-byte atomic.
+ */
+static inline uint64_t load_atom_extract_al16_or_al8(void *pv, int s)
+{
+#if defined(CONFIG_ATOMIC128)
+ uintptr_t pi = (uintptr_t)pv;
+ int o = pi & 7;
+ int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
+ __uint128_t r;
+
+ pv = (void *)(pi & ~7);
+ if (pi & 8) {
+ uint64_t *p8 = __builtin_assume_aligned(pv, 16, 8);
+ uint64_t a = qatomic_read__nocheck(p8);
+ uint64_t b = qatomic_read__nocheck(p8 + 1);
+
+ if (HOST_BIG_ENDIAN) {
+ r = ((__uint128_t)a << 64) | b;
+ } else {
+ r = ((__uint128_t)b << 64) | a;
+ }
+ } else {
+ __uint128_t *p16 = __builtin_assume_aligned(pv, 16, 0);
+ r = qatomic_read__nocheck(p16);
+ }
+ return r >> shr;
+#else
+ qemu_build_not_reached();
+#endif
+}
+
+/**
+ * load_atom_4_by_2:
+ * @pv: host address
+ *
+ * Load 4 bytes from @pv, with two 2-byte atomic loads.
+ */
+static inline uint32_t load_atom_4_by_2(void *pv)
+{
+ uint32_t a = load_atomic2(pv);
+ uint32_t b = load_atomic2(pv + 2);
+
+ if (HOST_BIG_ENDIAN) {
+ return (a << 16) | b;
+ } else {
+ return (b << 16) | a;
+ }
+}
+
+/**
+ * load_atom_8_by_2:
+ * @pv: host address
+ *
+ * Load 8 bytes from @pv, with four 2-byte atomic loads.
+ */
+static inline uint64_t load_atom_8_by_2(void *pv)
+{
+ uint32_t a = load_atom_4_by_2(pv);
+ uint32_t b = load_atom_4_by_2(pv + 4);
+
+ if (HOST_BIG_ENDIAN) {
+ return ((uint64_t)a << 32) | b;
+ } else {
+ return ((uint64_t)b << 32) | a;
+ }
+}
+
+/**
+ * load_atom_8_by_4:
+ * @pv: host address
+ *
+ * Load 8 bytes from @pv, with two 4-byte atomic loads.
+ */
+static inline uint64_t load_atom_8_by_4(void *pv)
+{
+ uint32_t a = load_atomic4(pv);
+ uint32_t b = load_atomic4(pv + 4);
+
+ if (HOST_BIG_ENDIAN) {
+ return ((uint64_t)a << 32) | b;
+ } else {
+ return ((uint64_t)b << 32) | a;
+ }
+}
+
+/**
+ * load_atom_2:
+ * @p: host address
+ * @memop: the full memory op
+ *
+ * Load 2 bytes from @p, honoring the atomicity of @memop.
+ */
+static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra,
+ void *pv, MemOp memop)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int atmax;
+
+ if (likely((pi & 1) == 0)) {
+ return load_atomic2(pv);
+ }
+ if (HAVE_al16_fast) {
+ return load_atom_extract_al16_or_al8(pv, 2);
+ }
+
+ atmax = required_atomicity(env, pi, memop);
+ switch (atmax) {
+ case MO_8:
+ return lduw_he_p(pv);
+ case MO_16:
+ /* The only case remaining is MO_ATOM_WITHIN16. */
+ if (!HAVE_al8_fast && (pi & 3) == 1) {
+ /* Big or little endian, we want the middle two bytes. */
+ return load_atomic4(pv - 1) >> 8;
+ }
+ if ((pi & 15) != 7) {
+ return load_atom_extract_al8_or_exit(env, ra, pv, 2);
+ }
+ return load_atom_extract_al16_or_exit(env, ra, pv, 2);
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/**
+ * load_atom_4:
+ * @p: host address
+ * @memop: the full memory op
+ *
+ * Load 4 bytes from @p, honoring the atomicity of @memop.
+ */
+static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra,
+ void *pv, MemOp memop)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int atmax;
+
+ if (likely((pi & 3) == 0)) {
+ return load_atomic4(pv);
+ }
+ if (HAVE_al16_fast) {
+ return load_atom_extract_al16_or_al8(pv, 4);
+ }
+
+ atmax = required_atomicity(env, pi, memop);
+ switch (atmax) {
+ case MO_8:
+ case MO_16:
+ case -MO_16:
+ /*
+ * For MO_ATOM_IFALIGN, this is more atomicity than required,
+ * but it's trivially supported on all hosts, better than 4
+ * individual byte loads (when the host requires alignment),
+ * and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0.
+ */
+ return load_atom_extract_al4x2(pv);
+ case MO_32:
+ if (!(pi & 4)) {
+ return load_atom_extract_al8_or_exit(env, ra, pv, 4);
+ }
+ return load_atom_extract_al16_or_exit(env, ra, pv, 4);
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/**
+ * load_atom_8:
+ * @p: host address
+ * @memop: the full memory op
+ *
+ * Load 8 bytes from @p, honoring the atomicity of @memop.
+ */
+static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra,
+ void *pv, MemOp memop)
+{
+ uintptr_t pi = (uintptr_t)pv;
+ int atmax;
+
+ /*
+ * If the host does not support 8-byte atomics, wait until we have
+ * examined the atomicity parameters below.
+ */
+ if (HAVE_al8 && likely((pi & 7) == 0)) {
+ return load_atomic8(pv);
+ }
+ if (HAVE_al16_fast) {
+ return load_atom_extract_al16_or_al8(pv, 8);
+ }
+
+ atmax = required_atomicity(env, pi, memop);
+ if (atmax == MO_64) {
+ if (!HAVE_al8 && (pi & 7) == 0) {
+ load_atomic8_or_exit(env, ra, pv);
+ }
+ return load_atom_extract_al16_or_exit(env, ra, pv, 8);
+ }
+ if (HAVE_al8_fast) {
+ return load_atom_extract_al8x2(pv);
+ }
+ switch (atmax) {
+ case MO_8:
+ return ldq_he_p(pv);
+ case MO_16:
+ return load_atom_8_by_2(pv);
+ case MO_32:
+ return load_atom_8_by_4(pv);
+ case -MO_32:
+ if (HAVE_al8) {
+ return load_atom_extract_al8x2(pv);
+ }
+ cpu_loop_exit_atomic(env_cpu(env), ra);
+ default:
+ g_assert_not_reached();
+ }
+}