@@ -294,4 +294,16 @@ config QCOM_PBS
This module provides the APIs to the client drivers that wants to send the
PBS trigger event to the PBS RAM.
+config QCOM_SCMI_CLIENT
+ tristate "Qualcomm Technologies Inc. SCMI client driver"
+ depends on ARM_SCMI_PROTOCOL_VENDOR_QCOM || COMPILE_TEST
+ default n
+ help
+ This driver uses the memlat algorithm string hosted on QCOM SCMI
+ Vendor Protocol to detect memory latency workloads and control
+ frequency/level of the various memory buses (DDR/LLCC/DDR_QOS).
+
+ This driver defines/documents the parameter IDs used while configuring
+ the memory buses.
+
endmenu
@@ -35,6 +35,7 @@ obj-$(CONFIG_QCOM_APR) += apr.o
obj-$(CONFIG_QCOM_LLCC) += llcc-qcom.o
obj-$(CONFIG_QCOM_KRYO_L2_ACCESSORS) += kryo-l2-accessors.o
obj-$(CONFIG_QCOM_ICC_BWMON) += icc-bwmon.o
+obj-$(CONFIG_QCOM_SCMI_CLIENT) += qcom_scmi_client.o
qcom_ice-objs += ice.o
obj-$(CONFIG_QCOM_INLINE_CRYPTO_ENGINE) += qcom_ice.o
obj-$(CONFIG_QCOM_PBS) += qcom-pbs.o
new file mode 100644
@@ -0,0 +1,583 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2024, Qualcomm Innovation Center, Inc. All rights reserved.
+ */
+
+#include <linux/cpu.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/qcom_scmi_vendor.h>
+#include <linux/scmi_protocol.h>
+#include <linux/units.h>
+#include <dt-bindings/soc/qcom,scmi-vendor.h>
+
+#define MEMLAT_ALGO_STR 0x4D454D4C4154 /* MEMLAT */
+#define INVALID_IDX 0xff
+#define MAX_MEMORY_TYPES 3
+#define MAX_MONITOR_CNT 4
+#define MAX_NAME_LEN 20
+#define MAX_MAP_ENTRIES 7
+#define CPUCP_DEFAULT_SAMPLING_PERIOD_MS 4
+#define CPUCP_DEFAULT_FREQ_METHOD 1
+
+/**
+ * scmi_memlat_protocol_cmd - parameter_ids supported by the "MEMLAT" algo_str hosted
+ * by the Qualcomm SCMI Vendor Protocol on the SCMI controller.
+ *
+ * MEMLAT (Memory Latency) monitors the counters to detect memory latency bound workloads
+ * and scales the frequency/levels of the memory buses accordingly.
+ *
+ * @MEMLAT_SET_MEM_GROUP: initializes the frequency/level scaling functions for the memory bus.
+ * @MEMLAT_SET_MONITOR: configures the monitor to work on a specific memory bus.
+ * @MEMLAT_SET_COMMON_EV_MAP: set up common counters used to monitor the cpu frequency.
+ * @MEMLAT_SET_GRP_EV_MAP: set up any specific counters used to monitor the memory bus.
+ * @MEMLAT_IPM_CEIL: set the IPM (Instruction Per Misses) ceiling per monitor.
+ * @MEMLAT_SAMPLE_MS: set the sampling period for all the monitors.
+ * MEMLAT_MON_FREQ_MAP: setup the cpufreq to memfreq map.
+ * MEMLAT_SET_MIN_FREQ: set the max frequency of the memory bus.
+ * MEMLAT_SET_MAX_FREQ: set the min frequency of the memory bus.
+ * MEMLAT_START_TIMER: start all the monitors with the requested sampling period.
+ * MEMLAT_START_TIMER: stop all the running monitors.
+ * MEMLAT_SET_EFFECTIVE_FREQ_METHOD: set the method used to determine cpu frequency.
+ */
+enum scmi_memlat_protocol_cmd {
+ MEMLAT_SET_MEM_GROUP = 16,
+ MEMLAT_SET_MONITOR,
+ MEMLAT_SET_COMMON_EV_MAP,
+ MEMLAT_SET_GRP_EV_MAP,
+ MEMLAT_IPM_CEIL = 23,
+ MEMLAT_SAMPLE_MS = 31,
+ MEMLAT_MON_FREQ_MAP,
+ MEMLAT_SET_MIN_FREQ,
+ MEMLAT_SET_MAX_FREQ,
+ MEMLAT_START_TIMER = 36,
+ MEMLAT_STOP_TIMER,
+ MEMLAT_SET_EFFECTIVE_FREQ_METHOD = 39,
+};
+
+struct map_table {
+ u16 v1;
+ u16 v2;
+};
+
+struct map_param_msg {
+ u32 hw_type;
+ u32 mon_idx;
+ u32 nr_rows;
+ struct map_table tbl[MAX_MAP_ENTRIES];
+} __packed;
+
+struct node_msg {
+ u32 cpumask;
+ u32 hw_type;
+ u32 mon_type;
+ u32 mon_idx;
+ char mon_name[MAX_NAME_LEN];
+};
+
+struct scalar_param_msg {
+ u32 hw_type;
+ u32 mon_idx;
+ u32 val;
+};
+
+enum common_ev_idx {
+ INST_IDX,
+ CYC_IDX,
+ CONST_CYC_IDX,
+ FE_STALL_IDX,
+ BE_STALL_IDX,
+ NUM_COMMON_EVS
+};
+
+enum grp_ev_idx {
+ MISS_IDX,
+ WB_IDX,
+ ACC_IDX,
+ NUM_GRP_EVS
+};
+
+#define EV_CPU_CYCLES 0
+#define EV_INST_RETIRED 2
+#define EV_L2_D_RFILL 5
+
+struct ev_map_msg {
+ u32 num_evs;
+ u32 hw_type;
+ u32 cid[NUM_COMMON_EVS];
+};
+
+struct cpufreq_memfreq_map {
+ unsigned int cpufreq_mhz;
+ unsigned int memfreq_khz;
+};
+
+struct scmi_monitor_info {
+ struct cpufreq_memfreq_map *freq_map;
+ char mon_name[MAX_NAME_LEN];
+ u32 mon_idx;
+ u32 mon_type;
+ u32 ipm_ceil;
+ u32 mask;
+ u32 freq_map_len;
+};
+
+struct scmi_memory_info {
+ struct scmi_monitor_info *monitor[MAX_MONITOR_CNT];
+ u32 hw_type;
+ int monitor_cnt;
+ u32 min_freq;
+ u32 max_freq;
+};
+
+struct scmi_memlat_info {
+ struct scmi_protocol_handle *ph;
+ const struct qcom_scmi_vendor_ops *ops;
+ struct scmi_memory_info *memory[MAX_MEMORY_TYPES];
+ u32 cluster_info[NR_CPUS];
+ int memory_cnt;
+};
+
+static int populate_cluster_info(u32 *cluster_info)
+{
+ char name[MAX_NAME_LEN];
+ int i = 0;
+
+ struct device_node *cn __free(device_node) = of_find_node_by_path("/cpus");
+ if (!cn)
+ return -ENODEV;
+
+ struct device_node *map __free(device_node) = of_get_child_by_name(cn, "cpu-map");
+ if (!map)
+ return -ENODEV;
+
+ do {
+ snprintf(name, sizeof(name), "cluster%d", i);
+ struct device_node *c __free(device_node) = of_get_child_by_name(map, name);
+ if (!c)
+ break;
+
+ *(cluster_info + i) = of_get_child_count(c);
+ i++;
+ } while (1);
+
+ return 0;
+}
+
+static int populate_physical_mask(struct device_node *np, u32 *mask, u32 *cluster_info)
+{
+ struct device_node *dev_phandle;
+ int cpu, i = 0, physical_id;
+
+ do {
+ dev_phandle = of_parse_phandle(np, "cpus", i++);
+ cpu = of_cpu_node_to_id(dev_phandle);
+ if (cpu != -ENODEV) {
+ physical_id = topology_core_id(cpu);
+ for (int j = 0; j < topology_cluster_id(cpu); j++)
+ physical_id += *(cluster_info + j);
+ *mask |= BIT(physical_id);
+ }
+ } while (dev_phandle);
+
+ return 0;
+}
+
+static struct cpufreq_memfreq_map *init_cpufreq_memfreq_map(struct device *dev,
+ struct scmi_memory_info *memory,
+ struct device_node *of_node,
+ u32 *cnt)
+{
+ struct device_node *tbl_np, *opp_np;
+ struct cpufreq_memfreq_map *tbl;
+ int ret, i = 0;
+ u32 level, len;
+ u64 rate;
+
+ tbl_np = of_parse_phandle(of_node, "operating-points-v2", 0);
+ if (!tbl_np)
+ return ERR_PTR(-ENODEV);
+
+ len = min(of_get_available_child_count(tbl_np), MAX_MAP_ENTRIES);
+ if (len == 0)
+ return ERR_PTR(-ENODEV);
+
+ tbl = devm_kzalloc(dev, (len + 1) * sizeof(struct cpufreq_memfreq_map),
+ GFP_KERNEL);
+ if (!tbl)
+ return ERR_PTR(-ENOMEM);
+
+ for_each_available_child_of_node(tbl_np, opp_np) {
+ ret = of_property_read_u64_index(opp_np, "opp-hz", 0, &rate);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ tbl[i].cpufreq_mhz = rate / HZ_PER_MHZ;
+
+ if (memory->hw_type != QCOM_MEM_TYPE_DDR_QOS) {
+ ret = of_property_read_u64_index(opp_np, "opp-hz", 1, &rate);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ tbl[i].memfreq_khz = rate / HZ_PER_KHZ;
+ } else {
+ ret = of_property_read_u32(opp_np, "opp-level", &level);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ tbl[i].memfreq_khz = level;
+ }
+
+ dev_dbg(dev, "Entry%d CPU:%u, Mem:%u\n", i, tbl[i].cpufreq_mhz, tbl[i].memfreq_khz);
+ i++;
+ }
+ *cnt = len;
+ tbl[i].cpufreq_mhz = 0;
+
+ return tbl;
+}
+
+static int process_scmi_memlat_of_node(struct scmi_device *sdev, struct scmi_memlat_info *info)
+{
+ struct scmi_monitor_info *monitor;
+ struct scmi_memory_info *memory;
+ char name[MAX_NAME_LEN];
+ u64 memfreq[2];
+ int ret;
+
+ ret = populate_cluster_info(info->cluster_info);
+ if (ret < 0) {
+ dev_err_probe(&sdev->dev, ret, "failed to populate cluster info\n");
+ goto err;
+ }
+
+ of_node_get(sdev->handle->dev->of_node);
+ do {
+ snprintf(name, sizeof(name), "memory-%d", info->memory_cnt);
+ struct device_node *memory_np __free(device_node) =
+ of_find_node_by_name(sdev->handle->dev->of_node, name);
+
+ if (!memory_np)
+ break;
+
+ memory = devm_kzalloc(&sdev->dev, sizeof(*memory), GFP_KERNEL);
+ if (!memory) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ ret = of_property_read_u32(memory_np, "qcom,memory-type", &memory->hw_type);
+ if (ret) {
+ dev_err_probe(&sdev->dev, ret, "failed to read memory type\n");
+ goto err;
+ }
+
+ ret = of_property_read_u64_array(memory_np, "freq-table-hz", memfreq, 2);
+ if (ret && (ret != -EINVAL)) {
+ dev_err_probe(&sdev->dev, ret, "failed to read min/max freq\n");
+ goto err;
+ }
+
+ if (memory->hw_type != QCOM_MEM_TYPE_DDR_QOS) {
+ memory->min_freq = memfreq[0] / HZ_PER_KHZ;
+ memory->max_freq = memfreq[1] / HZ_PER_KHZ;
+ } else {
+ memory->min_freq = memfreq[0];
+ memory->max_freq = memfreq[1];
+ }
+ info->memory[info->memory_cnt++] = memory;
+
+ do {
+ snprintf(name, sizeof(name), "monitor-%d", memory->monitor_cnt);
+ struct device_node *monitor_np __free(device_node) =
+ of_get_child_by_name(memory_np, name);
+
+ if (!monitor_np)
+ break;
+
+ monitor = devm_kzalloc(&sdev->dev, sizeof(*monitor), GFP_KERNEL);
+ if (!monitor) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ monitor->mon_type = of_property_read_bool(monitor_np, "qcom,compute-type");
+ if (!monitor->mon_type) {
+ ret = of_property_read_u32(monitor_np, "qcom,ipm-ceil",
+ &monitor->ipm_ceil);
+ if (ret) {
+ dev_err_probe(&sdev->dev, ret,
+ "failed to read IPM ceiling\n");
+ goto err;
+ }
+ }
+
+ /*
+ * Variants of the SoC having reduced number of cpus operate
+ * with the same number of logical cpus but the physical
+ * cpu disabled will differ between parts. Calculate the
+ * physical cpu number using cluster information instead.
+ */
+ ret = populate_physical_mask(monitor_np, &monitor->mask,
+ info->cluster_info);
+ if (ret < 0) {
+ dev_err_probe(&sdev->dev, ret, "failed to populate cpu mask\n");
+ goto err;
+ }
+
+ monitor->freq_map = init_cpufreq_memfreq_map(&sdev->dev, memory, monitor_np,
+ &monitor->freq_map_len);
+ if (IS_ERR(monitor->freq_map)) {
+ dev_err_probe(&sdev->dev, PTR_ERR(monitor->freq_map),
+ "failed to populate cpufreq-memfreq map\n");
+ goto err;
+ }
+
+ strscpy(monitor->mon_name, name, sizeof(monitor->mon_name));
+ monitor->mon_idx = memory->monitor_cnt;
+
+ memory->monitor[memory->monitor_cnt++] = monitor;
+ } while (1);
+
+ if (!memory->monitor_cnt) {
+ ret = -EINVAL;
+ dev_err_probe(&sdev->dev, ret, "failed to find monitor nodes\n");
+ goto err;
+ }
+ } while (1);
+
+ if (!info->memory_cnt) {
+ ret = -EINVAL;
+ dev_err_probe(&sdev->dev, ret, "failed to find memory nodes\n");
+ }
+
+err:
+ of_node_put(sdev->handle->dev->of_node);
+
+ return ret;
+}
+
+static int configure_cpucp_common_events(struct scmi_memlat_info *info)
+{
+ const struct qcom_scmi_vendor_ops *ops = info->ops;
+ u8 ev_map[NUM_COMMON_EVS];
+ struct ev_map_msg msg;
+ int ret;
+
+ memset(ev_map, 0xFF, NUM_COMMON_EVS);
+
+ msg.num_evs = NUM_COMMON_EVS;
+ msg.hw_type = INVALID_IDX;
+ msg.cid[INST_IDX] = EV_INST_RETIRED;
+ msg.cid[CYC_IDX] = EV_CPU_CYCLES;
+ msg.cid[CONST_CYC_IDX] = INVALID_IDX;
+ msg.cid[FE_STALL_IDX] = INVALID_IDX;
+ msg.cid[BE_STALL_IDX] = INVALID_IDX;
+
+ ret = ops->set_param(info->ph, &msg, MEMLAT_ALGO_STR, MEMLAT_SET_COMMON_EV_MAP,
+ sizeof(msg));
+ return ret;
+}
+
+static int configure_cpucp_grp(struct device *dev, struct scmi_memlat_info *info, int memory_index)
+{
+ const struct qcom_scmi_vendor_ops *ops = info->ops;
+ struct scmi_memory_info *memory = info->memory[memory_index];
+ struct ev_map_msg ev_msg;
+ u8 ev_map[NUM_GRP_EVS];
+ struct node_msg msg;
+ int ret;
+
+ msg.cpumask = 0;
+ msg.hw_type = memory->hw_type;
+ msg.mon_type = 0;
+ msg.mon_idx = 0;
+ ret = ops->set_param(info->ph, &msg, MEMLAT_ALGO_STR, MEMLAT_SET_MEM_GROUP, sizeof(msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "failed to configure mem type %d\n", memory->hw_type);
+ return ret;
+ }
+
+ memset(ev_map, 0xFF, NUM_GRP_EVS);
+ ev_msg.num_evs = NUM_GRP_EVS;
+ ev_msg.hw_type = memory->hw_type;
+ ev_msg.cid[MISS_IDX] = EV_L2_D_RFILL;
+ ev_msg.cid[WB_IDX] = INVALID_IDX;
+ ev_msg.cid[ACC_IDX] = INVALID_IDX;
+ ret = ops->set_param(info->ph, &ev_msg, MEMLAT_ALGO_STR, MEMLAT_SET_GRP_EV_MAP,
+ sizeof(ev_msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret,
+ "failed to configure event map for mem type %d\n", memory->hw_type);
+ return ret;
+ }
+
+ return ret;
+}
+
+static int configure_cpucp_mon(struct device *dev, struct scmi_memlat_info *info,
+ int memory_index, int monitor_index)
+{
+ const struct qcom_scmi_vendor_ops *ops = info->ops;
+ struct scmi_memory_info *memory = info->memory[memory_index];
+ struct scmi_monitor_info *monitor = memory->monitor[monitor_index];
+ struct scalar_param_msg scalar_msg;
+ struct map_param_msg map_msg;
+ struct node_msg msg;
+ int ret;
+ int i;
+
+ msg.cpumask = monitor->mask;
+ msg.hw_type = memory->hw_type;
+ msg.mon_type = monitor->mon_type;
+ msg.mon_idx = monitor->mon_idx;
+ strscpy(msg.mon_name, monitor->mon_name, sizeof(msg.mon_name));
+ ret = ops->set_param(info->ph, &msg, MEMLAT_ALGO_STR, MEMLAT_SET_MONITOR, sizeof(msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "failed to configure monitor %s\n", monitor->mon_name);
+ return ret;
+ }
+
+ scalar_msg.hw_type = memory->hw_type;
+ scalar_msg.mon_idx = monitor->mon_idx;
+ scalar_msg.val = monitor->ipm_ceil;
+ ret = ops->set_param(info->ph, &scalar_msg, MEMLAT_ALGO_STR, MEMLAT_IPM_CEIL,
+ sizeof(scalar_msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "failed to set ipm ceil for %s\n", monitor->mon_name);
+ return ret;
+ }
+
+ map_msg.hw_type = memory->hw_type;
+ map_msg.mon_idx = monitor->mon_idx;
+ map_msg.nr_rows = monitor->freq_map_len;
+ for (i = 0; i < monitor->freq_map_len; i++) {
+ map_msg.tbl[i].v1 = monitor->freq_map[i].cpufreq_mhz;
+ map_msg.tbl[i].v2 = monitor->freq_map[i].memfreq_khz;
+ }
+ ret = ops->set_param(info->ph, &map_msg, MEMLAT_ALGO_STR, MEMLAT_MON_FREQ_MAP,
+ sizeof(map_msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "failed to configure freq_map for %s\n", monitor->mon_name);
+ return ret;
+ }
+
+ scalar_msg.hw_type = memory->hw_type;
+ scalar_msg.mon_idx = monitor->mon_idx;
+ scalar_msg.val = memory->min_freq;
+ ret = ops->set_param(info->ph, &scalar_msg, MEMLAT_ALGO_STR, MEMLAT_SET_MIN_FREQ,
+ sizeof(scalar_msg));
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "failed to set min_freq for %s\n", monitor->mon_name);
+ return ret;
+ }
+
+ scalar_msg.hw_type = memory->hw_type;
+ scalar_msg.mon_idx = monitor->mon_idx;
+ scalar_msg.val = memory->max_freq;
+ ret = ops->set_param(info->ph, &scalar_msg, MEMLAT_ALGO_STR, MEMLAT_SET_MAX_FREQ,
+ sizeof(scalar_msg));
+ if (ret < 0)
+ dev_err_probe(dev, ret, "failed to set max_freq for %s\n", monitor->mon_name);
+
+ return ret;
+}
+
+static int cpucp_memlat_init(struct scmi_device *sdev)
+{
+ const struct scmi_handle *handle = sdev->handle;
+ const struct qcom_scmi_vendor_ops *ops;
+ struct scmi_protocol_handle *ph;
+ struct scmi_memlat_info *info;
+ u32 cpucp_freq_method = CPUCP_DEFAULT_FREQ_METHOD;
+ u32 cpucp_sample_ms = CPUCP_DEFAULT_SAMPLING_PERIOD_MS;
+ int ret, i, j;
+
+ if (!handle)
+ return -ENODEV;
+
+ ops = handle->devm_protocol_get(sdev, QCOM_SCMI_VENDOR_PROTOCOL, &ph);
+ if (IS_ERR(ops))
+ return PTR_ERR(ops);
+
+ info = devm_kzalloc(&sdev->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ ret = process_scmi_memlat_of_node(sdev, info);
+ if (ret)
+ return ret;
+
+ info->ph = ph;
+ info->ops = ops;
+
+ /* Configure common events ids */
+ ret = configure_cpucp_common_events(info);
+ if (ret < 0) {
+ dev_err_probe(&sdev->dev, ret, "failed to configure common events\n");
+ return ret;
+ }
+
+ for (i = 0; i < info->memory_cnt; i++) {
+ /* Configure per group parameters */
+ ret = configure_cpucp_grp(&sdev->dev, info, i);
+ if (ret < 0)
+ return ret;
+
+ for (j = 0; j < info->memory[i]->monitor_cnt; j++) {
+ /* Configure per monitor parameters */
+ ret = configure_cpucp_mon(&sdev->dev, info, i, j);
+ if (ret < 0)
+ return ret;
+ }
+ }
+
+ /* Set loop sampling time */
+ ret = ops->set_param(ph, &cpucp_sample_ms, MEMLAT_ALGO_STR, MEMLAT_SAMPLE_MS,
+ sizeof(cpucp_sample_ms));
+ if (ret < 0) {
+ dev_err_probe(&sdev->dev, ret, "failed to set sample_ms\n");
+ return ret;
+ }
+
+ /* Set the effective cpu frequency calculation method */
+ ret = ops->set_param(ph, &cpucp_freq_method, MEMLAT_ALGO_STR,
+ MEMLAT_SET_EFFECTIVE_FREQ_METHOD, sizeof(cpucp_freq_method));
+ if (ret < 0) {
+ dev_err_probe(&sdev->dev, ret, "failed to set effective frequency calc method\n");
+ return ret;
+ }
+
+ /* Start sampling and voting timer */
+ ret = ops->start_activity(ph, NULL, MEMLAT_ALGO_STR, MEMLAT_START_TIMER, 0);
+ if (ret < 0)
+ dev_err_probe(&sdev->dev, ret, "failed to start memory group timer\n");
+
+ return ret;
+}
+
+static int scmi_client_probe(struct scmi_device *sdev)
+{
+ return cpucp_memlat_init(sdev);
+}
+
+static const struct scmi_device_id scmi_id_table[] = {
+ { .protocol_id = QCOM_SCMI_VENDOR_PROTOCOL, .name = "qcom_scmi_vendor_protocol" },
+ { },
+};
+MODULE_DEVICE_TABLE(scmi, scmi_id_table);
+
+static struct scmi_driver qcom_scmi_client_drv = {
+ .name = "qcom-scmi-driver",
+ .probe = scmi_client_probe,
+ .id_table = scmi_id_table,
+};
+module_scmi_driver(qcom_scmi_client_drv);
+
+MODULE_DESCRIPTION("QTI SCMI client driver");
+MODULE_LICENSE("GPL");