@@ -248,6 +248,100 @@ static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
**********************************/
static void __zswap_pool_empty(struct percpu_ref *ref);
+static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
+{
+ struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
+ struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
+ struct crypto_acomp *acomp = NULL;
+ struct acomp_req *req = NULL;
+ u8 *buffer = NULL;
+ int ret;
+
+ buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
+ if (!buffer) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
+ if (IS_ERR(acomp)) {
+ pr_err("could not alloc crypto acomp %s : %ld\n",
+ pool->tfm_name, PTR_ERR(acomp));
+ ret = PTR_ERR(acomp);
+ goto fail;
+ }
+
+ req = acomp_request_alloc(acomp);
+ if (!req) {
+ pr_err("could not alloc crypto acomp_request %s\n",
+ pool->tfm_name);
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ /*
+ * Only hold the mutex after completing allocations, otherwise we may
+ * recurse into zswap through reclaim and attempt to hold the mutex
+ * again resulting in a deadlock.
+ */
+ mutex_lock(&acomp_ctx->mutex);
+ crypto_init_wait(&acomp_ctx->wait);
+
+ /*
+ * if the backend of acomp is async zip, crypto_req_done() will wakeup
+ * crypto_wait_req(); if the backend of acomp is scomp, the callback
+ * won't be called, crypto_wait_req() will return without blocking.
+ */
+ acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
+ crypto_req_done, &acomp_ctx->wait);
+
+ acomp_ctx->buffer = buffer;
+ acomp_ctx->acomp = acomp;
+ acomp_ctx->is_sleepable = acomp_is_async(acomp);
+ acomp_ctx->req = req;
+ mutex_unlock(&acomp_ctx->mutex);
+ return 0;
+
+fail:
+ if (acomp)
+ crypto_free_acomp(acomp);
+ kfree(buffer);
+ return ret;
+}
+
+static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
+{
+ struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
+ struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
+ struct acomp_req *req;
+ struct crypto_acomp *acomp;
+ u8 *buffer;
+
+ if (IS_ERR_OR_NULL(acomp_ctx))
+ return 0;
+
+ mutex_lock(&acomp_ctx->mutex);
+ req = acomp_ctx->req;
+ acomp = acomp_ctx->acomp;
+ buffer = acomp_ctx->buffer;
+ acomp_ctx->req = NULL;
+ acomp_ctx->acomp = NULL;
+ acomp_ctx->buffer = NULL;
+ mutex_unlock(&acomp_ctx->mutex);
+
+ /*
+ * Do the actual freeing after releasing the mutex to avoid subtle
+ * locking dependencies causing deadlocks.
+ */
+ if (!IS_ERR_OR_NULL(req))
+ acomp_request_free(req);
+ if (!IS_ERR_OR_NULL(acomp))
+ crypto_free_acomp(acomp);
+ kfree(buffer);
+
+ return 0;
+}
+
static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
{
struct zswap_pool *pool;
@@ -818,100 +912,6 @@ static void zswap_entry_free(struct zswap_entry *entry)
/*********************************
* compressed storage functions
**********************************/
-static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
-{
- struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
- struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
- struct crypto_acomp *acomp = NULL;
- struct acomp_req *req = NULL;
- u8 *buffer = NULL;
- int ret;
-
- buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
- if (!buffer) {
- ret = -ENOMEM;
- goto fail;
- }
-
- acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
- if (IS_ERR(acomp)) {
- pr_err("could not alloc crypto acomp %s : %ld\n",
- pool->tfm_name, PTR_ERR(acomp));
- ret = PTR_ERR(acomp);
- goto fail;
- }
-
- req = acomp_request_alloc(acomp);
- if (!req) {
- pr_err("could not alloc crypto acomp_request %s\n",
- pool->tfm_name);
- ret = -ENOMEM;
- goto fail;
- }
-
- /*
- * Only hold the mutex after completing allocations, otherwise we may
- * recurse into zswap through reclaim and attempt to hold the mutex
- * again resulting in a deadlock.
- */
- mutex_lock(&acomp_ctx->mutex);
- crypto_init_wait(&acomp_ctx->wait);
-
- /*
- * if the backend of acomp is async zip, crypto_req_done() will wakeup
- * crypto_wait_req(); if the backend of acomp is scomp, the callback
- * won't be called, crypto_wait_req() will return without blocking.
- */
- acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &acomp_ctx->wait);
-
- acomp_ctx->buffer = buffer;
- acomp_ctx->acomp = acomp;
- acomp_ctx->is_sleepable = acomp_is_async(acomp);
- acomp_ctx->req = req;
- mutex_unlock(&acomp_ctx->mutex);
- return 0;
-
-fail:
- if (acomp)
- crypto_free_acomp(acomp);
- kfree(buffer);
- return ret;
-}
-
-static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
-{
- struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
- struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
- struct acomp_req *req;
- struct crypto_acomp *acomp;
- u8 *buffer;
-
- if (IS_ERR_OR_NULL(acomp_ctx))
- return 0;
-
- mutex_lock(&acomp_ctx->mutex);
- req = acomp_ctx->req;
- acomp = acomp_ctx->acomp;
- buffer = acomp_ctx->buffer;
- acomp_ctx->req = NULL;
- acomp_ctx->acomp = NULL;
- acomp_ctx->buffer = NULL;
- mutex_unlock(&acomp_ctx->mutex);
-
- /*
- * Do the actual freeing after releasing the mutex to avoid subtle
- * locking dependencies causing deadlocks.
- */
- if (!IS_ERR_OR_NULL(req))
- acomp_request_free(req);
- if (!IS_ERR_OR_NULL(acomp))
- crypto_free_acomp(acomp);
- kfree(buffer);
-
- return 0;
-}
-
static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
{
struct crypto_acomp_ctx *acomp_ctx;
This patch merely moves zswap_cpu_comp_prepare() and zswap_cpu_comp_dead() to be in the "pool functions" section because these functions are invoked upon pool creation/deletion. Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> --- mm/zswap.c | 188 ++++++++++++++++++++++++++--------------------------- 1 file changed, 94 insertions(+), 94 deletions(-)